Skip to content

Commit

Permalink
Merge branch 'master' into compathelper/new_version/2024-01-15-00-08-…
Browse files Browse the repository at this point in the history
…42-270-02576116010
  • Loading branch information
pogudingleb authored Jan 26, 2024
2 parents 24869a9 + 590f5be commit 3d246f3
Show file tree
Hide file tree
Showing 66 changed files with 2,535 additions and 2,128 deletions.
3 changes: 2 additions & 1 deletion .github/workflows/CI.yml
Original file line number Diff line number Diff line change
Expand Up @@ -13,6 +13,7 @@ jobs:
matrix:
group:
- Core
- ModelingToolkitExt
version:
- '1'
- '1.6'
Expand All @@ -21,7 +22,7 @@ jobs:
- uses: julia-actions/setup-julia@v1
with:
version: ${{ matrix.version }}
- uses: actions/cache@v3
- uses: actions/cache@v4
env:
cache-name: cache-artifacts
with:
Expand Down
34 changes: 22 additions & 12 deletions Project.toml
Original file line number Diff line number Diff line change
Expand Up @@ -14,45 +14,55 @@ IterTools = "c8e1da08-722c-5040-9ed9-7db0dc04731e"
LinearAlgebra = "37e2e46d-f89d-539d-b4ee-838fcccc9c8e"
Logging = "56ddb016-857b-54e1-b83d-db4d58db5568"
MacroTools = "1914dd2f-81c6-5fcd-8719-6d5c9610ff09"
ModelingToolkit = "961ee093-0014-501f-94e3-6117800e7a78"
Nemo = "2edaba10-b0f1-5616-af89-8c11ac63239a"
ParamPunPam = "3e851597-e36f-45a9-af0a-b7781937992f"
PrecompileTools = "aea7be01-6a6a-4083-8856-8a6e6704d82a"
Primes = "27ebfcd6-29c5-5fa9-bf4b-fb8fc14df3ae"
Random = "9a3f8284-a2c9-5f02-9a11-845980a1fd5c"
Requires = "ae029012-a4dd-5104-9daa-d747884805df"
SpecialFunctions = "276daf66-3868-5448-9aa4-cd146d93841b"
TimerOutputs = "a759f4b9-e2f1-59dc-863e-4aeb61b1ea8f"

[weakdeps]
ModelingToolkit = "961ee093-0014-501f-94e3-6117800e7a78"
SymbolicUtils = "d1185830-fcd6-423d-90d6-eec64667417b"
Symbolics = "0c5d862f-8b57-4792-8d23-62f2024744c7"
TimerOutputs = "a759f4b9-e2f1-59dc-863e-4aeb61b1ea8f"

[extensions]
ModelingToolkitExt = ["ModelingToolkit", "SymbolicUtils", "Symbolics"]

[compat]
AbstractAlgebra = "0.27, 0.28, 0.29, 0.30, 0.31, 0.32, 0.33, 0.34, 0.35"
AbstractAlgebra = "0.34.5, 0.35"
BenchmarkTools = "1"
Combinatorics = "1"
DataStructures = "0.18"
Dates = "1.6, 1.7"
Groebner = "0.4, 0.5, 0.6"
Groebner = "0.6.3"
IterTools = "1"
LinearAlgebra = "1.6, 1.7"
Logging = "1.6, 1.7"
MacroTools = "0.5"
ModelingToolkit = "8.51"
Nemo = "0.32, 0.33, 0.34, 0.35, 0.36, 0.37, 0.38, 0.39"
ParamPunPam = "0.2, 0.3"
PrecompileTools = "1.1, 1.2"
ModelingToolkit = "8.74"
Nemo = "0.38.3, 0.39"
ParamPunPam = "0.3.1"
PrecompileTools = "1.2"
Primes = "0.5"
Random = "1.6, 1.7"
SpecialFunctions = "1, 2"
SymbolicUtils = "1"
Symbolics = "5.5"
SpecialFunctions = "2"
SymbolicUtils = "1.4, 1.5"
Symbolics = "5.16"
TestSetExtensions = "2"
TimerOutputs = "0.5"
julia = "1.6, 1.7"

[extras]
CPUSummary = "2a0fbf3d-bb9c-48f3-b0a9-814d99fd7ab9"
ModelingToolkit = "961ee093-0014-501f-94e3-6117800e7a78"
Pkg = "44cfe95a-1eb2-52ea-b672-e2afdf69b78f"
SymbolicUtils = "d1185830-fcd6-423d-90d6-eec64667417b"
Symbolics = "0c5d862f-8b57-4792-8d23-62f2024744c7"
Test = "8dfed614-e22c-5e08-85e1-65c5234f0b40"
TestSetExtensions = "98d24dd4-01ad-11ea-1b02-c9a08f80db04"

[targets]
test = ["CPUSummary", "Test", "TestSetExtensions"]
test = ["CPUSummary", "Pkg", "Test", "TestSetExtensions"]
22 changes: 11 additions & 11 deletions benchmarking/IdentifiableFunctions/param.jl
Original file line number Diff line number Diff line change
Expand Up @@ -31,7 +31,7 @@ function check_constructive_field_membership(generators::AbstractVector, to_be_r
$(join(map(x -> string(x[1]) * " -> " * string(x[2]), zip(fracs_gen, tag_strings)), "\t\n"))
"""
var_strings = vcat(sat_string, map(string, gens(ring)), tag_strings)
ring_tag, xs_tag = PolynomialRing(K, var_strings, ordering = Nemo.ordering(ring))
ring_tag, xs_tag = polynomial_ring(K, var_strings, ordering = Nemo.ordering(ring))
orig_vars = xs_tag[2:(nvars(ring) + 1)]
tag_vars = xs_tag[(nvars(ring) + 2):end]
sat_var = xs_tag[1]
Expand Down Expand Up @@ -121,12 +121,12 @@ rem_tags, tag_to_gen = check_constructive_field_membership(fracs_generators, to_
#=
┌ Info:
│ rem_tags =
│ 3-element Vector{AbstractAlgebra.Generic.Frac{fmpq_mpoly}}:
│ 3-element Vector{AbstractAlgebra.Generic.Frac{QQMPolyRingElem}}:
│ T1^2
│ -5*T1 + T2
│ T2//T1^10
│ tag_to_gen =
│ Dict{fmpq_mpoly, AbstractAlgebra.Generic.Frac{fmpq_mpoly}} with 2 entries:
│ Dict{QQMPolyRingElem, AbstractAlgebra.Generic.Frac{QQMPolyRingElem}} with 2 entries:
│ T1 => a^2
└ T2 => (a + b)//b
=#
Expand Down Expand Up @@ -205,10 +205,10 @@ new_vector_field, new_outputs, new_vars =
│ Dict{Any, Any} with 1 entry:
│ T1 => 2*T1 + T2
│ new_outputs =
│ Dict{fmpq_mpoly, AbstractAlgebra.Generic.Frac{fmpq_mpoly}} with 1 entry:
│ Dict{QQMPolyRingElem, AbstractAlgebra.Generic.Frac{QQMPolyRingElem}} with 1 entry:
│ y => T1
│ new_vars =
│ Dict{fmpq_mpoly, AbstractAlgebra.Generic.Frac{fmpq_mpoly}} with 2 entries:
│ Dict{QQMPolyRingElem, AbstractAlgebra.Generic.Frac{QQMPolyRingElem}} with 2 entries:
│ T2 => a + b
└ T1 => x2 + x1
=#
Expand All @@ -230,7 +230,7 @@ id_funcs = StructuralIdentifiability.find_identifiable_functions(
#=
┌ Info:
│ id_funcs =
│ 2-element Vector{AbstractAlgebra.Generic.Frac{fmpq_mpoly}}:
│ 2-element Vector{AbstractAlgebra.Generic.Frac{QQMPolyRingElem}}:
│ x2*x1
└ a + b
=#
Expand All @@ -246,10 +246,10 @@ new_vector_field, new_outputs, new_vars = reparametrize_with_respect_to(ode, new
│ Dict{Any, Any} with 1 entry:
│ T1 => T1*T2
│ new_outputs =
│ Dict{fmpq_mpoly, AbstractAlgebra.Generic.Frac{fmpq_mpoly}} with 1 entry:
│ Dict{QQMPolyRingElem, AbstractAlgebra.Generic.Frac{QQMPolyRingElem}} with 1 entry:
│ y => T1
│ new_vars =
│ Dict{fmpq_mpoly, AbstractAlgebra.Generic.Frac{fmpq_mpoly}} with 2 entries:
│ Dict{QQMPolyRingElem, AbstractAlgebra.Generic.Frac{QQMPolyRingElem}} with 2 entries:
│ T2 => a + b
└ T1 => x2*x1
=#
Expand All @@ -271,7 +271,7 @@ id_funcs = StructuralIdentifiability.find_identifiable_functions(
#=
┌ Info:
│ id_funcs =
│ 5-element Vector{AbstractAlgebra.Generic.Frac{fmpq_mpoly}}:
│ 5-element Vector{AbstractAlgebra.Generic.Frac{QQMPolyRingElem}}:
│ x2*x1
│ a*b
│ x2 + x1
Expand All @@ -292,10 +292,10 @@ new_vector_field, new_iutputs, new_vars = reparametrize_with_respect_to(ode, new
│ T2 => T2*T4
│ T3 => -1//2*T1*T4^2 + 2*T1*T5 + 1//2*T3*T4
│ new_outputs =
│ Dict{fmpq_mpoly, AbstractAlgebra.Generic.Frac{fmpq_mpoly}} with 1 entry:
│ Dict{QQMPolyRingElem, AbstractAlgebra.Generic.Frac{QQMPolyRingElem}} with 1 entry:
│ y => T1
│ new_vars =
│ Dict{fmpq_mpoly, AbstractAlgebra.Generic.Frac{fmpq_mpoly}} with 5 entries:
│ Dict{QQMPolyRingElem, AbstractAlgebra.Generic.Frac{QQMPolyRingElem}} with 5 entries:
│ T1 => x2 + x1
│ T2 => x2*x1
│ T3 => a*x2 - a*x1 - b*x2 + b*x1
Expand Down
2 changes: 1 addition & 1 deletion docs/Project.toml
Original file line number Diff line number Diff line change
Expand Up @@ -7,5 +7,5 @@ StructuralIdentifiability = "220ca800-aa68-49bb-acd8-6037fa93a544"
[compat]
BenchmarkTools = "1.3"
Documenter = "0.27, 1"
ModelingToolkit = "8.34"
ModelingToolkit = "8.74"
StructuralIdentifiability = "0.5"
4 changes: 2 additions & 2 deletions docs/src/assets/Project.toml
Original file line number Diff line number Diff line change
Expand Up @@ -7,5 +7,5 @@ StructuralIdentifiability = "220ca800-aa68-49bb-acd8-6037fa93a544"
[compat]
BenchmarkTools = "1.3"
Documenter = "0.27, 1"
ModelingToolkit = "8.34"
StructuralIdentifiability = "0.4"
ModelingToolkit = "8.74"
StructuralIdentifiability = "0.5"
8 changes: 7 additions & 1 deletion docs/src/input/input.md
Original file line number Diff line number Diff line change
@@ -1,4 +1,4 @@
# Parsing input ODE system
# Parsing input system

```@docs
@ODEmodel(ex::Expr...)
Expand All @@ -11,3 +11,9 @@ set_parameter_values
```@docs
linear_compartment_model
```

## Discrete-time systems

```@docs
@DDSmodel
```
4 changes: 3 additions & 1 deletion docs/src/tutorials/creating_ode.md
Original file line number Diff line number Diff line change
Expand Up @@ -54,7 +54,9 @@ assess_identifiability(ode)

## Defining using `ModelingToolkit`

Alternatively, one can use `ModelingToolkit`: encode the equations for the states as `ODESystem` and specify the outputs separately.
`StructuralIdentifiability` has an extension `ModelingToolkitExt` which allows to use `ODESystem` from `ModelingToolkit` to descibe
a model. The extension is loaded automatically once `ModelingToolkit` is loaded via `using ModelingToolkit`.
In this case, one should encode the equations for the states as `ODESystem` and specify the outputs separately.
In order to do this, we first introduce all functions and scalars:

```@example 2; continued = true
Expand Down
97 changes: 70 additions & 27 deletions docs/src/tutorials/discrete_time.md
Original file line number Diff line number Diff line change
@@ -1,13 +1,20 @@
# Identifiability of Discrete-Time Models (Local)

Now we consider a discrete-time model in the state-space form
Now we consider a discrete-time model in the state-space form. Such a model is typically written either in terms of **shift**:

$\begin{cases}
\mathbf{x}(t + 1) = \mathbf{f}(\mathbf{x}(t), \mathbf{p}, \mathbf{u}(t)),\\
\mathbf{y}(t) = \mathbf{g}(\mathbf{x}(t), \mathbf{p}, \mathbf{u(t)}),
\end{cases}$

or in terms of **difference**

$\begin{cases}
\Delta\mathbf{x}(t) = \mathbf{f}(\mathbf{x}(t), \mathbf{p}, \mathbf{u}(t)),\\
\mathbf{y}(t) = \mathbf{g}(\mathbf{x}(t), \mathbf{p}, \mathbf{u(t)}),
\end{cases} \quad \text{where} \quad \Delta \mathbf{x}(t) := \mathbf{x}(t + 1) - \mathbf{x}(t)$
\end{cases} \quad \text{where} \quad \Delta \mathbf{x}(t) := \mathbf{x}(t + 1) - \mathbf{x}(t).$

and $\mathbf{x}(t), \mathbf{y}(t)$, and $\mathbf{u}(t)$ are time-dependent states, outputs, and inputs, respectively,
In both cases,$\mathbf{x}(t), \mathbf{y}(t)$, and $\mathbf{u}(t)$ are time-dependent states, outputs, and inputs, respectively,
and $\mathbf{p}$ are scalar parameters.
As in the ODE case, we will call that a parameter or a states (or a function of them) is **identifiable** if its value can be recovered from
time series for inputs and outputs (in the generic case, see Definition 3 in [^1] for details).
Expand All @@ -21,50 +28,53 @@ Currently, `StructuralIdentifiability.jl` allows to assess only local identifiab
and below we will describe how this can be done.
As a running example, we will use the following discrete version of the [SIR](https://en.wikipedia.org/wiki/Compartmental_models_in_epidemiology#The_SIR_model) model:

$\begin{cases}
\Delta S(t) = S(t) - \beta S(t) I(t),\\
\Delta I(t) = I(t) + \beta S(t) I(t) - \alpha I(t),\\
\Delta R(t) = R(t) + \alpha I(t),\\
$
\begin{cases}
S(t + 1) = S(t) - \beta S(t) I(t),\\
I(t + 1) = I(t) + \beta S(t) I(t) - \alpha I(t),\\
R(t + 1) = R(t) + \alpha I(t),\\
y(t) = I(t),
\end{cases}
\quad \text{or}
\quad
\begin{cases}
\Delta S(t) = -\beta S(t) I(t),\\
\Delta I(t) = \beta S(t) I(t) - \alpha I(t),\\
\Delta R(t) = \alpha I(t),\\
y(t) = I(t),
\end{cases}$

where the observable is `I`, the number of infected people.
We start with creating a system as a `DiscreteSystem` from `ModelingToolkit`:
The native way to define such a model in `StructuralIdentifiability` is to use `@DDSmodel` macro which
uses the shift notation:

```@example discrete
using ModelingToolkit
```@example discrete_dds
using StructuralIdentifiability
@parameters α β
@variables t S(t) I(t) R(t) y(t)
D = Difference(t; dt = 1.0)
eqs = [D(S) ~ S - β * S * I, D(I) ~ I + β * S * I - α * I, D(R) ~ R + α * I]
@named sir = DiscreteSystem(eqs)
dds = @DDSmodel(
S(t + 1) = S(t) - β * S(t) * I(t),
I(t + 1) = I(t) + β * S(t) * I(t) - α * I(t),
R(t + 1) = R(t) + α * I(t),
y(t) = I(t)
)
```

Once the model is defined, we can assess identifiability by providing the formula for the observable:
Then local identifiability can be assessed using `assess_local_identifiability` function:

```@example discrete
assess_local_identifiability(sir; measured_quantities = [y ~ I])
```@example discrete_dds
assess_local_identifiability(dds)
```

For each parameter or state, the value in the returned dictionary is `true` (`1`) if the parameter is locally identifiable and `false` (`0`) otherwise.
We see that `R(t)` is not identifiable, which makes sense: it does not affect the dynamics of the observable in any way.

In principle, it is not required to give a name to the observable, so one can write this shorter

```@example discrete
assess_local_identifiability(sir; measured_quantities = [I])
```

The `assess_local_identifiability` function has three important keyword arguments:

- `funcs_to_check` is a list of functions for which one want to assess identifiability, for example, the following code
will check if `β * S` is locally identifiable.

```@example discrete
assess_local_identifiability(sir; measured_quantities = [I], funcs_to_check = [β * S])
```@example discrete_dds
assess_local_identifiability(dds; funcs_to_check = [β * S])
```

- `prob_threshold` is the probability of correctness (default value `0.99`, i.e., 99%). The underlying algorithm is a Monte-Carlo algorithm, so in
Expand All @@ -77,6 +87,39 @@ assess_local_identifiability(sir; measured_quantities = [I], funcs_to_check = [
As other main functions in the package, `assess_local_identifiability` accepts an optional parameter `loglevel` (default: `Logging.Info`)
to adjust the verbosity of logging.

If one loads `ModelingToolkit` (and thus the `ModelingToolkitExt` extension), one can use `DiscreteSystem` from `ModelingToolkit` to
describe the input model (now in terms of difference!):

```@example discrete_mtk
using ModelingToolkit
using StructuralIdentifiability
@parameters α β
@variables t S(t) I(t) R(t) y(t)
D = Difference(t; dt = 1.0)
eqs = [D(S) ~ S - β * S * I, D(I) ~ I + β * S * I - α * I, D(R) ~ R + α * I]
@named sir = DiscreteSystem(eqs)
```

Then the same computation can be carried out with the models defined this way:

```@example discrete_mtk
assess_local_identifiability(sir; measured_quantities = [y ~ I])
```

In principle, it is not required to give a name to the observable, so one can write this shorter

```@example discrete_mtk
assess_local_identifiability(sir; measured_quantities = [I])
```

The same example but with specified functions to check

```@example discrete_mtk
assess_local_identifiability(sir; measured_quantities = [I], funcs_to_check = [β * S])
```

The implementation is based on a version of the observability rank criterion and will be described in a forthcoming paper.

[^1]: > S. Nõmm, C. Moog, [*Identifiability of discrete-time nonlinear systems*](https://doi.org/10.1016/S1474-6670(17)31245-4), IFAC Proceedings Volumes, 2004.
Loading

0 comments on commit 3d246f3

Please sign in to comment.