Skip to content

Commit

Permalink
Merge pull request #102 from SkyTruth/feature-offset3
Browse files Browse the repository at this point in the history
Feature offset3
  • Loading branch information
jonaraphael authored Nov 6, 2023
2 parents 5f2626d + ae960c6 commit 62dce08
Show file tree
Hide file tree
Showing 4 changed files with 122 additions and 101 deletions.
43 changes: 35 additions & 8 deletions cerulean_cloud/cloud_run_orchestrator/handler.py
Original file line number Diff line number Diff line change
Expand Up @@ -321,19 +321,35 @@ async def _orchestrate(
base_group_bounds = group_bounds_from_list_of_bounds(base_tiles_bounds)
print(f"base_group_bounds: {base_group_bounds}")

offset_tiles_bounds = offset_bounds_from_base_tiles(base_tiles)
# tiling.py was updated to allow for offset_amount to be declared by offset_bounds_from_base_tiles(), see tiling.py line 61.
offset_tiles_bounds = offset_bounds_from_base_tiles(base_tiles, offset_amount=0.33)
offset_group_shape = offset_group_shape_from_base_tiles(base_tiles, scale=scale)
offset_group_bounds = group_bounds_from_list_of_bounds(offset_tiles_bounds)
print(f"Offset image shape is {offset_group_shape}")
print(f"offset_group_bounds: {offset_group_bounds}")
print(f"Offset 1 offset_tiles_bounds {offset_tiles_bounds}")
print(f"Offset 1 image shape is {offset_group_shape}")
print(f"Offset 1 offset_group_bounds: {offset_group_bounds}")

print(f"Original tiles are {len(base_tiles)}, {len(offset_tiles_bounds)}")
print("START OF OFFSET #2")
offset_2_tiles_bounds = offset_bounds_from_base_tiles(
base_tiles, offset_amount=0.66
)
offset_2_group_shape = offset_group_shape_from_base_tiles(base_tiles, scale=scale)
offset_2_group_bounds = group_bounds_from_list_of_bounds(offset_2_tiles_bounds)
print(f"Offset 2 offset_tiles_bounds {offset_2_tiles_bounds}")
print(f"Offset 2 image shape is {offset_2_group_shape}")
print(f"Offset 2 offset_group_bounds: {offset_2_group_bounds}")

print(
f"Original tiles are {len(base_tiles)}, {len(offset_tiles_bounds)}, {len(offset_2_tiles_bounds)}"
)

# Filter out land tiles
# XXXBUG is_tile_over_water throws ValueError if the scene crosses or is close to the antimeridian. Example: S1A_IW_GRDH_1SDV_20230726T183302_20230726T183327_049598_05F6CA_31E7
# XXXBUG is_tile_over_water throws IndexError if the scene touches the Caspian sea (globe says it is NOT ocean, whereas our cloud_function_scene_relevancy says it is). Example: S1A_IW_GRDH_1SDV_20230727T025332_20230727T025357_049603_05F6F2_AF3E
base_tiles = [t for t in base_tiles if is_tile_over_water(tiler.bounds(t))]

offset_tiles_bounds = [b for b in offset_tiles_bounds if is_tile_over_water(b)]
offset_2_tiles_bounds = [b for b in offset_2_tiles_bounds if is_tile_over_water(b)]

ntiles = len(base_tiles)
noffsettiles = len(offset_tiles_bounds)
Expand Down Expand Up @@ -407,13 +423,25 @@ async def _orchestrate(
"offset tiles",
)

offset_2_tiles_inference = await perform_inference(
offset_2_tiles_bounds,
cloud_run_inference.get_offset_tile_inference,
20,
"offset2 tiles",
)

if model.type == "MASKRCNN":
out_fc = geojson.FeatureCollection(
features=flatten_feature_list(base_tiles_inference)
)

out_fc_offset = geojson.FeatureCollection(
features=flatten_feature_list(offset_tiles_inference)
)

out_fc_offset_2 = geojson.FeatureCollection(
features=flatten_feature_list(offset_2_tiles_inference)
)
elif model.type == "UNET":
# print("Loading all tiles into memory for merge!")
# ds_base_tiles = []
Expand Down Expand Up @@ -475,10 +503,10 @@ async def _orchestrate(
# Example: S1A_IW_GRDH_1SDV_20230727T185101_20230727T185126_049613_05F744_1E56
print("XXXDEBUG out_fc", out_fc)
print("XXXDEBUG out_fc_offset", out_fc_offset)
print("XXXCDEBUG out_fc_offset2", out_fc_offset_2)

merged_inferences = merge_inferences(
out_fc,
out_fc_offset,
isolated_conf_multiplier=0.5,
feature_collections=[out_fc, out_fc_offset, out_fc_offset_2],
proximity_meters=500,
closing_meters=0,
opening_meters=0,
Expand Down Expand Up @@ -540,5 +568,4 @@ async def _orchestrate(
ntiles=ntiles,
noffsettiles=noffsettiles,
)

return orchestrator_result
151 changes: 75 additions & 76 deletions cerulean_cloud/cloud_run_orchestrator/merging.py
Original file line number Diff line number Diff line change
@@ -1,4 +1,6 @@
"""merging inference from base and offset tiles"""
from typing import List

import geojson
import geopandas as gpd
import networkx as nx
Expand All @@ -12,100 +14,97 @@ def reproject_to_utm(gdf_wgs84):


def merge_inferences(
base_tile_fc: geojson.FeatureCollection,
offset_tile_fc: geojson.FeatureCollection,
isolated_conf_multiplier: float = 1,
feature_collections: List[geojson.FeatureCollection],
proximity_meters: int = 500,
closing_meters: int = 0,
opening_meters: int = 0,
) -> geojson.FeatureCollection:
"""
Merge base and offset tile inference.
Merge base and all offset tile inference.
This function takes in two geojson FeatureCollections and merges them together.
During the merge, the geometries can be adjusted to incorporate neighboring features
based on the proximity setting. The confidence of isolated features can also be adjusted.
This function takes a list of geojson FeatureCollections and merges them together. During the merge, the
geometries can be adjusted to incorporate neighboring features based on the proximity setting. The
confidence of isolated features can also be adjusted.
Parameters:
- base_tile_fc: The primary FeatureCollection to be merged.
- offset_tile_fc: The secondary FeatureCollection to be merged with the primary.
- isolated_conf_multiplier: A multiplier for the confidence of isolated features (default is 1).
- feature_collections: A list of FeatureCollecitons to be merged, a primary and any secondary FeatureCollections
- proximity_meters: The distance to check for neighboring features and expand the geometries (default is 500m).
- closing_meters: The distance to apply the morphological 'closing' operation (default is 0m).
- opening_meters: The distance to apply the morphological 'opening' operation (default is 0m).
Returns:
A merged geojson FeatureCollection.
"""

# Check if both FeatureCollections have features
if base_tile_fc["features"] and offset_tile_fc["features"]:
# Convert the FeatureCollections to GeoDataFrames
base_gdf = gpd.GeoDataFrame.from_features(base_tile_fc["features"], crs=4326)
offset_gdf = gpd.GeoDataFrame.from_features(
offset_tile_fc["features"], crs=4326
# We reproject to UTM for processing. This assumes that all offset images will either be in the same UTM zone as
# the input image chip, or that the difference that arise from an offset crossing into a second UTM zone will
# have little or no impact on comparison to the original image.
gdfs_for_processing = [
reproject_to_utm(
gpd.GeoDataFrame.from_features(fc["features"], crs=4326).assign(fc_index=i)
)
for i, fc in enumerate(feature_collections)
if fc["features"]
]

# Reproject both GeoDataFrames to a UTM CRS (for accurate distance calculations)
base_gdf = reproject_to_utm(base_gdf)
offset_gdf = offset_gdf.to_crs(base_gdf.crs)

# Combine both GeoDataFrames
concat_gdf = pd.concat([base_gdf, offset_gdf], ignore_index=True)
final_gdf = concat_gdf.copy()

# If proximity is set, expand the geometry of each feature by the defined distance
if proximity_meters is not None:
concat_gdf["geometry"] = concat_gdf.buffer(proximity_meters)

# Join the features that intersect with each other
joined = gpd.sjoin(concat_gdf, concat_gdf, predicate="intersects").reset_index()

# Create a graph where each node represents a feature and edges represent overlaps/intersections
G = nx.from_pandas_edgelist(joined, "index", "index_right")

# For each connected component in the graph, assign a group index and count its features
group_mapping = {
feature: group
for group, component in enumerate(nx.connected_components(G))
for feature in component
}
group_counts = {
feature: len(component)
for component in nx.connected_components(G)
for feature in component
}

# Map the group indices and counts back to the GeoDataFrame
final_gdf["group_index"] = final_gdf.index.map(group_mapping)
final_gdf["group_count"] = final_gdf.index.map(group_counts)

# Adjust the confidence value for features that are isolated (not part of a larger group)
final_gdf.loc[
final_gdf["group_count"] == 1, "machine_confidence"
] *= isolated_conf_multiplier

# Dissolve overlapping features into one based on their group index and calculate the median confidence and maximum inference index
dissolved_gdf = final_gdf.dissolve(
by="group_index", aggfunc={"machine_confidence": "median", "inf_idx": "max"}
)
if len(gdfs_for_processing) == 0:
# No inferences found in any tiling
return geojson.FeatureCollection(features=[])

# If set, apply a morphological 'closing' operation to the geometries
if closing_meters is not None:
dissolved_gdf["geometry"] = dissolved_gdf.buffer(closing_meters).buffer(
-closing_meters
)
# Concat the GeoDataFrames
concat_gdf = pd.concat(gdfs_for_processing, ignore_index=True)
final_gdf = concat_gdf.copy()

# If proximity is set, expand the geometry of each feature by the defined distance
if proximity_meters is not None:
concat_gdf["geometry"] = concat_gdf.buffer(proximity_meters)

# Join the features that intersect with each other
joined = gpd.sjoin(concat_gdf, concat_gdf, predicate="intersects").reset_index()

# Create a graph where each node represents a feature and edges represent overlaps/intersections
G = nx.from_pandas_edgelist(joined, "index", "index_right")

# For each connected component in the graph, assign a group index and count its features
group_mapping = {
feature: group
for group, component in enumerate(nx.connected_components(G))
for feature in component
}
group_counts = {
feature: len(component)
for component in nx.connected_components(G)
for feature in component
}

# Map the group indices and counts back to the GeoDataFrame
final_gdf["group_index"] = final_gdf.index.map(group_mapping)
final_gdf["group_count"] = final_gdf.index.map(group_counts)

# Adjust the confidence value for features that are isolated (not part of a larger group)
final_gdf["overlap_factor"] = final_gdf.groupby("group_index")[
"fc_index"
].transform(lambda x: len(x.unique()) / len(feature_collections))

final_gdf["machine_confidence"] *= final_gdf["overlap_factor"]

# Dissolve overlapping features into one based on their group index and calculate the median confidence and maximum inference index
dissolved_gdf = final_gdf.dissolve(
by="group_index", aggfunc={"machine_confidence": "median", "inf_idx": "max"}
)

# If set, apply a morphological 'closing' operation to the geometries
if closing_meters is not None:
dissolved_gdf["geometry"] = dissolved_gdf.buffer(closing_meters).buffer(
-closing_meters
)

# If set, apply a morphological 'opening' operation to the geometries
if opening_meters is not None:
dissolved_gdf["geometry"] = dissolved_gdf.buffer(-opening_meters).buffer(
opening_meters
)
# If set, apply a morphological 'opening' operation to the geometries
if opening_meters is not None:
dissolved_gdf["geometry"] = dissolved_gdf.buffer(-opening_meters).buffer(
opening_meters
)

# Reproject the GeoDataFrame back to WGS 84 CRS
result = dissolved_gdf.to_crs(crs=4326)
# Reproject the GeoDataFrame back to WGS 84 CRS
result = dissolved_gdf.to_crs(crs=4326)

return result.__geo_interface__
else:
# If one of the FeatureCollections is empty, return an empty FeatureCollection
return geojson.FeatureCollection(features=[])
return result.__geo_interface__
5 changes: 3 additions & 2 deletions cerulean_cloud/tiling.py
Original file line number Diff line number Diff line change
Expand Up @@ -58,6 +58,7 @@ def adjacent_tile(tile: morecantile.Tile, dx: int, dy: int) -> morecantile.Tile:

def offset_bounds_from_base_tiles(
tiles: List[morecantile.Tile],
offset_amount: float = 0.5,
) -> List[Tuple[float, float, float, float]]:
"""from a set of base tiles, generate offset tiles"""
out_offset_tile_bounds = []
Expand All @@ -74,8 +75,8 @@ def offset_bounds_from_base_tiles(
# +2 because tileymax needs to be included (+1) and the new grid has one extra row/column (+1)
tile = morecantile.Tile(new_x, new_y, zoom)
adj_tile = adjacent_tile(tile, -1, -1) # Negative dY is upwards!!!
minx, maxy = pixel_to_location(adj_tile, 0.5, 0.5)
maxx, miny = pixel_to_location(tile, 0.5, 0.5)
minx, maxy = pixel_to_location(adj_tile, offset_amount, offset_amount)
maxx, miny = pixel_to_location(tile, offset_amount, offset_amount)
out_offset_tile_bounds += [(minx, miny, maxx, maxy)]

return out_offset_tile_bounds
24 changes: 9 additions & 15 deletions test/test_cerulean_cloud/test_cloud_run_orchestrator.py
Original file line number Diff line number Diff line change
Expand Up @@ -433,9 +433,7 @@ def test_func_merge_inferences():
offset_tile_fc = dict(geojson.load(src))

merged = merge_inferences(
base_tile_fc=base_tile_fc,
offset_tile_fc=offset_tile_fc,
isolated_conf_multiplier=0.1,
[base_tile_fc, offset_tile_fc],
proximity_meters=500,
closing_meters=100,
opening_meters=100,
Expand All @@ -458,23 +456,19 @@ def test_func_merge_inferences_empty():
with open("test/test_cerulean_cloud/fixtures/offset.geojson") as src:
offset_tile_fc = dict(geojson.load(src))

merged = merge_inferences(
base_tile_fc=geojson.FeatureCollection(features=[]),
offset_tile_fc=offset_tile_fc,
)
merged = merge_inferences([geojson.FeatureCollection(features=[]), offset_tile_fc])
assert merged["type"] == "FeatureCollection"
assert len(merged["features"]) == 0
assert len(merged["features"]) == 5

merged = merge_inferences(
base_tile_fc=offset_tile_fc,
offset_tile_fc=geojson.FeatureCollection(features=[]),
)
merged = merge_inferences([offset_tile_fc, geojson.FeatureCollection(features=[])])
assert merged["type"] == "FeatureCollection"
assert len(merged["features"]) == 0
assert len(merged["features"]) == 5

merged = merge_inferences(
base_tile_fc=geojson.FeatureCollection(features=[]),
offset_tile_fc=geojson.FeatureCollection(features=[]),
[
geojson.FeatureCollection(features=[]),
geojson.FeatureCollection(features=[]),
],
)
assert merged["type"] == "FeatureCollection"
assert len(merged["features"]) == 0
Expand Down

0 comments on commit 62dce08

Please sign in to comment.