Skip to content
New issue

Have a question about this project? Sign up for a free GitHub account to open an issue and contact its maintainers and the community.

By clicking “Sign up for GitHub”, you agree to our terms of service and privacy statement. We’ll occasionally send you account related emails.

Already on GitHub? Sign in to your account

Added support for AzureAI client service #188

Open
wants to merge 16 commits into
base: main
Choose a base branch
from
399 changes: 399 additions & 0 deletions adalflow/adalflow/components/model_client/azureai_client.py
Original file line number Diff line number Diff line change
@@ -0,0 +1,399 @@
"""AzureOpenAI ModelClient integration."""

import os
Copy link
Member

@liyin2015 liyin2015 Oct 6, 2024

Choose a reason for hiding this comment

The reason will be displayed to describe this comment to others. Learn more.

This feels almost the same as openai client, maybe we should just subclass from openai client and overwrite a few functions. [Will accept for now, but will need a lot more work to simplify]

from typing import (
Dict,
Sequence,
Optional,
List,
Any,
TypeVar,
Callable,
Generator,
Union,
Literal,
)
import re

import logging
import backoff

# optional import
from adalflow.utils.lazy_import import safe_import, OptionalPackages


openai = safe_import(OptionalPackages.OPENAI.value[0], OptionalPackages.OPENAI.value[1])
from azure.identity import DefaultAzureCredential, get_bearer_token_provider
Copy link
Member

Choose a reason for hiding this comment

The reason will be displayed to describe this comment to others. Learn more.

please change this to safe import

from azure.core.credentials import AccessToken
from openai import AzureOpenAI, AsyncAzureOpenAI, Stream
from openai import (
APITimeoutError,
InternalServerError,
RateLimitError,
UnprocessableEntityError,
BadRequestError,
)
from openai.types import (
Completion,
CreateEmbeddingResponse,
)
from openai.types.chat import ChatCompletionChunk, ChatCompletion

from adalflow.core.model_client import ModelClient
from adalflow.core.types import (
ModelType,
EmbedderOutput,
TokenLogProb,
CompletionUsage,
GeneratorOutput,
)
from adalflow.components.model_client.utils import parse_embedding_response

log = logging.getLogger(__name__)
T = TypeVar("T")


# completion parsing functions and you can combine them into one singple chat completion parser
def get_first_message_content(completion: ChatCompletion) -> str:
r"""When we only need the content of the first message.
It is the default parser for chat completion."""
return completion.choices[0].message.content


# def _get_chat_completion_usage(completion: ChatCompletion) -> OpenAICompletionUsage:
# return completion.usage


def parse_stream_response(completion: ChatCompletionChunk) -> str:
r"""Parse the response of the stream API."""
return completion.choices[0].delta.content


def handle_streaming_response(generator: Stream[ChatCompletionChunk]):
r"""Handle the streaming response."""
for completion in generator:
log.debug(f"Raw chunk completion: {completion}")
parsed_content = parse_stream_response(completion)
yield parsed_content


def get_all_messages_content(completion: ChatCompletion) -> List[str]:
r"""When the n > 1, get all the messages content."""
return [c.message.content for c in completion.choices]


def get_probabilities(completion: ChatCompletion) -> List[List[TokenLogProb]]:
r"""Get the probabilities of each token in the completion."""
log_probs = []
for c in completion.choices:
content = c.logprobs.content
print(content)

Choose a reason for hiding this comment

The reason will be displayed to describe this comment to others. Learn more.

@adityasugandhi I think you forgot to remove print statement here on line 90.

log_probs_for_choice = []
for openai_token_logprob in content:
token = openai_token_logprob.token
logprob = openai_token_logprob.logprob
log_probs_for_choice.append(TokenLogProb(token=token, logprob=logprob))
log_probs.append(log_probs_for_choice)
return log_probs


class AzureAIClient(ModelClient):
__doc__ = r"""A component wrapper for the AzureOpenAI API client.

adityasugandhi marked this conversation as resolved.
Show resolved Hide resolved
Support both embedding and chat completion API.

Users (1) simplify use ``Embedder`` and ``Generator`` components by passing OpenAIClient() as the model_client.
(2) can use this as an example to create their own API client or extend this class(copying and modifing the code) in their own project.

Note:
We suggest users not to use `response_format` to enforce output data type or `tools` and `tool_choice` in your model_kwargs when calling the API.
We do not know how AzureOpenAI is doing the formating or what prompt they have added.
Instead
- use :ref:`OutputParser<components-output_parsers>` for response parsing and formating.

Args:
api_key (Optional[str], optional): AzureOpenAI API key. Defaults to None.
chat_completion_parser (Callable[[Completion], Any], optional): A function to parse the chat completion to a str. Defaults to None.
Default is `get_first_message_content`.

References:
- Embeddings models: https://platform.openai.com/docs/guides/embeddings
- Chat models: https://platform.openai.com/docs/guides/text-generation
- AzureOpenAI docs: https://learn.microsoft.com/en-us/azure/ai-services/openai/overview
"""

def __init__(
self,
api_key: Optional[str] = None,
api_version:Optional[str]=None,
azure_endpoint: Optional[str]= None,
credential: Optional[DefaultAzureCredential] = None,
chat_completion_parser: Callable[[Completion], Any] = None,
input_type: Literal["text", "messages"] = "text",
):
r"""It is recommended to set the OPENAI_API_KEY environment variable instead of passing it as an argument.
Copy link
Member

Choose a reason for hiding this comment

The reason will be displayed to describe this comment to others. Learn more.

so it does not have it only api_key? why using openai_api_key?

Copy link
Contributor Author

Choose a reason for hiding this comment

The reason will be displayed to describe this comment to others. Learn more.

@liyin2015 I have made changes as mentioned in the comments



Initializes the Azure OpenAI client with either API key or AAD token authentication.

Args:
api_key: Azure OpenAI API key.
api_version: Azure OpenAI API version.
azure_endpoint: Azure OpenAI endpoint.
credential: Azure AD credential for token-based authentication.
chat_completion_parser: Function to parse chat completions.
input_type: Input format, either "text" or "messages".

"""
super().__init__()

# added api_type azure for azure Ai
self.api_type = "azure"
self._api_key = api_key
self._apiversion= api_version
self._azure_endpoint = azure_endpoint
self._credential = credential
self.sync_client = self.init_sync_client()
self.async_client = None # only initialize if the async call is called
self.chat_completion_parser = (
chat_completion_parser or get_first_message_content
)
self._input_type = input_type

def init_sync_client(self):
api_key = self._api_key or os.getenv("AZURE_OPENAI_API_KEY")
azure_endpoint = self._azure_endpoint or os.getenv("AZURE_OPENAI_ENDPOINT")
api_version = self._apiversion or os.getenv("AZURE_OPENAI_VERSION")
credential = self._credential or DefaultAzureCredential
if not azure_endpoint:
raise ValueError("Environment variable AZURE_OPENAI_ENDPOINT must be set")
if not api_version:
raise ValueError("Environment variable AZURE_OPENAI_VERSION must be set")

if api_key:
return AzureOpenAI(api_key=api_key, azure_endpoint=azure_endpoint, api_version=api_version)
elif self._credential:
# credential = DefaultAzureCredential()
token_provider = get_bearer_token_provider(DefaultAzureCredential(), "https://cognitiveservices.azure.com/.default")
return AzureOpenAI(azure_ad_token_provider=token_provider, azure_endpoint=azure_endpoint, api_version=api_version)
else:
raise ValueError("Environment variable AZURE_OPENAI_API_KEY must be set or credential must be provided")


def init_async_client(self):
api_key = self._api_key or os.getenv("AZURE_OPENAI_API_KEY")
azure_endpoint = self._azure_endpoint or os.getenv("AZURE_OPENAI_ENDPOINT")
api_version = self._apiversion or os.getenv("AZURE_OPENAI_VERSION")
credential = self._credential or DefaultAzureCredential()
if not azure_endpoint:
raise ValueError("Environment variable AZURE_OPENAI_ENDPOINT must be set")
if not api_version:
raise ValueError("Environment variable AZURE_OPENAI_VERSION must be set")

if api_key:
return AsyncAzureOpenAI(api_key=api_key, azure_endpoint=azure_endpoint, api_version=api_version)
elif self._credential:
# credential = DefaultAzureCredential()
token_provider = get_bearer_token_provider(DefaultAzureCredential(), "https://cognitiveservices.azure.com/.default")
return AsyncAzureOpenAI(azure_ad_token_provider=token_provider, azure_endpoint=azure_endpoint, api_version=api_version)
else:
raise ValueError("Environment variable AZURE_OPENAI_API_KEY must be set or credential must be provided")

# def _parse_chat_completion(self, completion: ChatCompletion) -> "GeneratorOutput":
# # TODO: raw output it is better to save the whole completion as a source of truth instead of just the message
# try:
# data = self.chat_completion_parser(completion)
# usage = self.track_completion_usage(completion)
# return GeneratorOutput(
# data=data, error=None, raw_response=str(data), usage=usage
# )
# except Exception as e:
# log.error(f"Error parsing the completion: {e}")
# return GeneratorOutput(data=None, error=str(e), raw_response=completion)

def parse_chat_completion(
self,
completion: Union[ChatCompletion, Generator[ChatCompletionChunk, None, None]],
) -> "GeneratorOutput":
"""Parse the completion, and put it into the raw_response."""
log.debug(f"completion: {completion}, parser: {self.chat_completion_parser}")
try:
data = self.chat_completion_parser(completion)
usage = self.track_completion_usage(completion)
return GeneratorOutput(
data=None, error=None, raw_response=data, usage=usage
)
except Exception as e:
log.error(f"Error parsing the completion: {e}")
return GeneratorOutput(data=None, error=str(e), raw_response=completion)

def track_completion_usage(
self,
completion: Union[ChatCompletion, Generator[ChatCompletionChunk, None, None]],
) -> CompletionUsage:
if isinstance(completion, ChatCompletion):
usage: CompletionUsage = CompletionUsage(
completion_tokens=completion.usage.completion_tokens,
prompt_tokens=completion.usage.prompt_tokens,
total_tokens=completion.usage.total_tokens,
)
return usage
else:
raise NotImplementedError(
"streaming completion usage tracking is not implemented"
)

def parse_embedding_response(
self, response: CreateEmbeddingResponse
) -> EmbedderOutput:
r"""Parse the embedding response to a structure LightRAG components can understand.

Should be called in ``Embedder``.
"""
try:
return parse_embedding_response(response)
except Exception as e:
log.error(f"Error parsing the embedding response: {e}")
return EmbedderOutput(data=[], error=str(e), raw_response=response)

def convert_inputs_to_api_kwargs(
self,
input: Optional[Any] = None,
model_kwargs: Dict = {},
model_type: ModelType = ModelType.UNDEFINED,
) -> Dict:
r"""
Specify the API input type and output api_kwargs that will be used in _call and _acall methods.
Convert the Component's standard input, and system_input(chat model) and model_kwargs into API-specific format
"""

final_model_kwargs = model_kwargs.copy()
if model_type == ModelType.EMBEDDER:
if isinstance(input, str):
input = [input]
# convert input to input
if not isinstance(input, Sequence):
raise TypeError("input must be a sequence of text")
final_model_kwargs["input"] = input
elif model_type == ModelType.LLM:
# convert input to messages
messages: List[Dict[str, str]] = []

if self._input_type == "messages":
system_start_tag = "<START_OF_SYSTEM_PROMPT>"
system_end_tag = "<END_OF_SYSTEM_PROMPT>"
user_start_tag = "<START_OF_USER_PROMPT>"
user_end_tag = "<END_OF_USER_PROMPT>"
pattern = f"{system_start_tag}(.*?){system_end_tag}{user_start_tag}(.*?){user_end_tag}"
# Compile the regular expression
regex = re.compile(pattern)
# Match the pattern
match = regex.search(input)
system_prompt, input_str = None, None

if match:
system_prompt = match.group(1)
input_str = match.group(2)

else:
print("No match found.")
if system_prompt and input_str:
messages.append({"role": "system", "content": system_prompt})
messages.append({"role": "user", "content": input_str})
if len(messages) == 0:
messages.append({"role": "system", "content": input})
final_model_kwargs["messages"] = messages
else:
raise ValueError(f"model_type {model_type} is not supported")
return final_model_kwargs

@backoff.on_exception(
backoff.expo,
(
APITimeoutError,
InternalServerError,
RateLimitError,
UnprocessableEntityError,
BadRequestError,
),
max_time=5,
)
def call(self, api_kwargs: Dict = {}, model_type: ModelType = ModelType.UNDEFINED):
"""
kwargs is the combined input and model_kwargs. Support streaming call.
"""
log.info(f"api_kwargs: {api_kwargs}")
if model_type == ModelType.EMBEDDER:
return self.sync_client.embeddings.create(**api_kwargs)
elif model_type == ModelType.LLM:
if "stream" in api_kwargs and api_kwargs.get("stream", False):
log.debug("streaming call")
self.chat_completion_parser = handle_streaming_response
return self.sync_client.chat.completions.create(**api_kwargs)
return self.sync_client.chat.completions.create(**api_kwargs)
else:
raise ValueError(f"model_type {model_type} is not supported")

@backoff.on_exception(
backoff.expo,
(
APITimeoutError,
InternalServerError,
RateLimitError,
UnprocessableEntityError,
BadRequestError,
),
max_time=5,
)
async def acall(
self, api_kwargs: Dict = {}, model_type: ModelType = ModelType.UNDEFINED
):
"""
kwargs is the combined input and model_kwargs
"""
if self.async_client is None:
self.async_client = self.init_async_client()
if model_type == ModelType.EMBEDDER:
return await self.async_client.embeddings.create(**api_kwargs)
elif model_type == ModelType.LLM:
return await self.async_client.chat.completions.create(**api_kwargs)
else:
raise ValueError(f"model_type {model_type} is not supported")

@classmethod
def from_dict(cls: type[T], data: Dict[str, Any]) -> T:
obj = super().from_dict(data)
# recreate the existing clients
obj.sync_client = obj.init_sync_client()
obj.async_client = obj.init_async_client()
return obj

def to_dict(self) -> Dict[str, Any]:
r"""Convert the component to a dictionary."""
# TODO: not exclude but save yes or no for recreating the clients
exclude = [
"sync_client",
"async_client",
] # unserializable object
output = super().to_dict(exclude=exclude)
return output


# if __name__ == "__main__":
# from adalflow.core import Generator
# from adalflow.utils import setup_env, get_logger

# log = get_logger(level="DEBUG")

# setup_env()
# prompt_kwargs = {"input_str": "What is the meaning of life?"}

# gen = Generator(
# model_client=OpenAIClient(),
# model_kwargs={"model": "gpt-3.5-turbo", "stream": True},
# )
# gen_response = gen(prompt_kwargs)
# print(f"gen_response: {gen_response}")

# for genout in gen_response.data:
# print(f"genout: {genout}")