Skip to content
New issue

Have a question about this project? Sign up for a free GitHub account to open an issue and contact its maintainers and the community.

By clicking “Sign up for GitHub”, you agree to our terms of service and privacy statement. We’ll occasionally send you account related emails.

Already on GitHub? Sign in to your account

Update dependency numpy to v2 #1386

Merged
merged 1 commit into from
Jan 14, 2025
Merged

Update dependency numpy to v2 #1386

merged 1 commit into from
Jan 14, 2025

Conversation

renovate[bot]
Copy link
Contributor

@renovate renovate bot commented Oct 20, 2024

This PR contains the following updates:

Package Change Age Adoption Passing Confidence
numpy (changelog) ^1.24.1 -> ^2.0.0 age adoption passing confidence
numpy (changelog) ==1.26.4 -> ==2.2.1 age adoption passing confidence

Release Notes

numpy/numpy (numpy)

v2.2.1

Compare Source

v2.2.0: 2.2.0 (Dec 8, 2024)

Compare Source

NumPy 2.2.0 Release Notes

The NumPy 2.2.0 release is quick release that brings us back into sync
with the usual twice yearly release cycle. There have been an number of
small cleanups, as well as work bringing the new StringDType to
completion and improving support for free threaded Python. Highlights
are:

  • New functions matvec and vecmat, see below.
  • Many improved annotations.
  • Improved support for the new StringDType.
  • Improved support for free threaded Python
  • Fixes for f2py

This release supports Python versions 3.10-3.13.

Deprecations

  • _add_newdoc_ufunc is now deprecated. ufunc.__doc__ = newdoc
    should be used instead.

    (gh-27735)

Expired deprecations

  • bool(np.array([])) and other empty arrays will now raise an error.
    Use arr.size > 0 instead to check whether an array has no
    elements.

    (gh-27160)

Compatibility notes

  • numpy.cov now properly transposes single-row (2d
    array) design matrices when rowvar=False. Previously, single-row
    design matrices would return a scalar in this scenario, which is not
    correct, so this is a behavior change and an array of the
    appropriate shape will now be returned.

    (gh-27661)

New Features

  • New functions for matrix-vector and vector-matrix products

    Two new generalized ufuncs were defined:

    • numpy.matvec - matrix-vector product, treating the
      arguments as stacks of matrices and column vectors,
      respectively.
    • numpy.vecmat - vector-matrix product, treating the
      arguments as stacks of column vectors and matrices,
      respectively. For complex vectors, the conjugate is taken.

    These add to the existing numpy.matmul as well as to
    numpy.vecdot, which was added in numpy 2.0.

    Note that numpy.matmul never takes a complex
    conjugate, also not when its left input is a vector, while both
    numpy.vecdot and numpy.vecmat do take
    the conjugate for complex vectors on the left-hand side (which are
    taken to be the ones that are transposed, following the physics
    convention).

    (gh-25675)

  • np.complexfloating[T, T] can now also be written as
    np.complexfloating[T]

    (gh-27420)

  • UFuncs now support __dict__ attribute and allow overriding
    __doc__ (either directly or via ufunc.__dict__["__doc__"]).
    __dict__ can be used to also override other properties, such as
    __module__ or __qualname__.

    (gh-27735)

  • The "nbit" type parameter of np.number and its subtypes now
    defaults to typing.Any. This way, type-checkers will infer
    annotations such as x: np.floating as x: np.floating[Any], even
    in strict mode.

    (gh-27736)

Improvements

  • The datetime64 and timedelta64 hashes now correctly match the
    Pythons builtin datetime and timedelta ones. The hashes now
    evaluated equal even for equal values with different time units.

    (gh-14622)

  • Fixed a number of issues around promotion for string ufuncs with
    StringDType arguments. Mixing StringDType and the fixed-width DTypes
    using the string ufuncs should now generate much more uniform
    results.

    (gh-27636)

  • Improved support for empty memmap. Previously an empty
    memmap would fail unless a non-zero offset was set.
    Now a zero-size memmap is supported even if
    offset=0. To achieve this, if a memmap is mapped to
    an empty file that file is padded with a single byte.

    (gh-27723)

  • A regression has been fixed which allows F2PY users to expose variables
    to Python in modules with only assignments, and also fixes situations
    where multiple modules are present within a single source file.

    (gh-27695)

Performance improvements and changes

  • Improved multithreaded scaling on the free-threaded build when many
    threads simultaneously call the same ufunc operations.

    (gh-27896)

  • NumPy now uses fast-on-failure attribute lookups for protocols. This
    can greatly reduce overheads of function calls or array creation
    especially with custom Python objects. The largest improvements will
    be seen on Python 3.12 or newer.

    (gh-27119)

  • OpenBLAS on x86_64 and i686 is built with fewer kernels. Based on
    benchmarking, there are 5 clusters of performance around these
    kernels: PRESCOTT NEHALEM SANDYBRIDGE HASWELL SKYLAKEX.

  • OpenBLAS on windows is linked without quadmath, simplifying
    licensing

  • Due to a regression in OpenBLAS on windows, the performance
    improvements when using multiple threads for OpenBLAS 0.3.26 were
    reverted.

    (gh-27147)

  • NumPy now indicates hugepages also for large np.zeros allocations
    on linux. Thus should generally improve performance.

    (gh-27808)

Changes

  • numpy.fix now won't perform casting to a floating
    data-type for integer and boolean data-type input arrays.

    (gh-26766)

  • The type annotations of numpy.float64 and numpy.complex128 now
    reflect that they are also subtypes of the built-in float and
    complex types, respectively. This update prevents static
    type-checkers from reporting errors in cases such as:

    x: float = numpy.float64(6.28)  # valid
    z: complex = numpy.complex128(-1j)  # valid

    (gh-27334)

  • The repr of arrays large enough to be summarized (i.e., where
    elements are replaced with ...) now includes the shape of the
    array, similar to what already was the case for arrays with zero
    size and non-obvious shape. With this change, the shape is always
    given when it cannot be inferred from the values. Note that while
    written as shape=..., this argument cannot actually be passed in
    to the np.array constructor. If you encounter problems, e.g., due
    to failing doctests, you can use the print option legacy=2.1 to
    get the old behaviour.

    (gh-27482)

  • Calling __array_wrap__ directly on NumPy arrays or scalars now
    does the right thing when return_scalar is passed (Added in NumPy
    2). It is further safe now to call the scalar __array_wrap__ on a
    non-scalar result.

    (gh-27807)

  • Bump the musllinux CI image and wheels to 1_2 from 1_1. This is because
    1_1 is end of life.

    (gh-27088)

  • The NEP 50 promotion state settings are now removed. They were always
    meant as temporary means for testing. A warning will be given if the
    environment variable is set to anything but NPY_PROMOTION_STATE=weak
    while _set_promotion_state and _get_promotion_state are removed. In
    case code used _no_nep50_warning, a contextlib.nullcontext could be
    used to replace it when not available.

    (gh-27156)

Checksums

MD5
1b58b9e275e80364cd02dafb3f8daf35  numpy-2.2.0-cp310-cp310-macosx_10_9_x86_64.whl
7d3773d9b665b2d7cfec0cc0b760e69e  numpy-2.2.0-cp310-cp310-macosx_11_0_arm64.whl
8ef666a462d3765ccfd5288f2fdf8e08  numpy-2.2.0-cp310-cp310-macosx_14_0_arm64.whl
e4f9e3117075ffe53d7993253c774158  numpy-2.2.0-cp310-cp310-macosx_14_0_x86_64.whl
fd60e410e5db402a2d0c0cb4dd23281d  numpy-2.2.0-cp310-cp310-manylinux_2_17_aarch64.manylinux2014_aarch64.whl
64c083cdbd91eb8670cd72b619f3a039  numpy-2.2.0-cp310-cp310-manylinux_2_17_x86_64.manylinux2014_x86_64.whl
c3c75c2299f5163770e2e42f0dee5276  numpy-2.2.0-cp310-cp310-musllinux_1_2_aarch64.whl
f6ab05f787221bbaf8fb4a9778af5467  numpy-2.2.0-cp310-cp310-musllinux_1_2_x86_64.whl
9b04caec124cadf90005ccdb662aad9f  numpy-2.2.0-cp310-cp310-win32.whl
58934f23b6bc71fb1f984b688c1c6136  numpy-2.2.0-cp310-cp310-win_amd64.whl
769e53438154e53ba490fb4f816c083e  numpy-2.2.0-cp311-cp311-macosx_10_9_x86_64.whl
aa8060c013c04133b63780025eef4451  numpy-2.2.0-cp311-cp311-macosx_11_0_arm64.whl
72c10ef28a0ddffe6bf2495954ab82e0  numpy-2.2.0-cp311-cp311-macosx_14_0_arm64.whl
946b2510c86eb48e374e6987582c9b46  numpy-2.2.0-cp311-cp311-macosx_14_0_x86_64.whl
3f5203ae901ddd78cb298582eda07627  numpy-2.2.0-cp311-cp311-manylinux_2_17_aarch64.manylinux2014_aarch64.whl
fd14624d40100a5eb0181bf393394448  numpy-2.2.0-cp311-cp311-manylinux_2_17_x86_64.manylinux2014_x86_64.whl
7c86d51d89dbc5a6860d65641ea131ef  numpy-2.2.0-cp311-cp311-musllinux_1_2_aarch64.whl
895c6588c74019b94fb3c740b9e9a0f5  numpy-2.2.0-cp311-cp311-musllinux_1_2_x86_64.whl
1468ae1cb59a43991b199cfa6f1e5679  numpy-2.2.0-cp311-cp311-win32.whl
48a3792698a81917320b91a30c0bacf4  numpy-2.2.0-cp311-cp311-win_amd64.whl
db4377351f167d82adc66b16965d11bd  numpy-2.2.0-cp312-cp312-macosx_10_13_x86_64.whl
3f3978b5e480ed18d55b1799d9a534ff  numpy-2.2.0-cp312-cp312-macosx_11_0_arm64.whl
584b4063eb66688b607f7e7bdca58011  numpy-2.2.0-cp312-cp312-macosx_14_0_arm64.whl
dfacf4ee4842d845f5e12f912ebc2055  numpy-2.2.0-cp312-cp312-macosx_14_0_x86_64.whl
2f10d9bc44635078a6222ed50c9fd0f2  numpy-2.2.0-cp312-cp312-manylinux_2_17_aarch64.manylinux2014_aarch64.whl
bb69665b4b68b7af82939132972e8261  numpy-2.2.0-cp312-cp312-manylinux_2_17_x86_64.manylinux2014_x86_64.whl
92e9b03039ab737e6799dbd9d057fce2  numpy-2.2.0-cp312-cp312-musllinux_1_2_aarch64.whl
a4198f53e3906394012ab88dffff4077  numpy-2.2.0-cp312-cp312-musllinux_1_2_x86_64.whl
f9cb2f38ae8272ab5eb4b209c59be45f  numpy-2.2.0-cp312-cp312-win32.whl
6ffe9e1abf69bb8c4ee2e913b1badfde  numpy-2.2.0-cp312-cp312-win_amd64.whl
330838b6e06481341b35f8d4b6b50bbb  numpy-2.2.0-cp313-cp313-macosx_10_13_x86_64.whl
4fb63be6d2b92acfba0c2eaedce82e06  numpy-2.2.0-cp313-cp313-macosx_11_0_arm64.whl
e4086f43f9ce29b5adf939e1b5150f03  numpy-2.2.0-cp313-cp313-macosx_14_0_arm64.whl
ba74e1f7142954127fb2aef544a6b05e  numpy-2.2.0-cp313-cp313-macosx_14_0_x86_64.whl
83f51806139d5adc70a2e309d0300ad1  numpy-2.2.0-cp313-cp313-manylinux_2_17_aarch64.manylinux2014_aarch64.whl
bf9af9abb1e30521b3491f0748ba6199  numpy-2.2.0-cp313-cp313-manylinux_2_17_x86_64.manylinux2014_x86_64.whl
4d30c57bd7103b36a4bf7a4a9e25e10d  numpy-2.2.0-cp313-cp313-musllinux_1_2_aarch64.whl
5b12557dde538f99fd87d1682638a212  numpy-2.2.0-cp313-cp313-musllinux_1_2_x86_64.whl
ee7689d2ecbcbd7c883f69099bd41892  numpy-2.2.0-cp313-cp313-win32.whl
370a2b14681c6dc4af8596f62d96bb20  numpy-2.2.0-cp313-cp313-win_amd64.whl
e6fd32fb42fd89c7659e799d65c19557  numpy-2.2.0-cp313-cp313t-macosx_10_13_x86_64.whl
8e9b0579f2e22f38f57399ab18d6e651  numpy-2.2.0-cp313-cp313t-macosx_11_0_arm64.whl
71a7ee75208a633a8c36d4ed5b551c33  numpy-2.2.0-cp313-cp313t-macosx_14_0_arm64.whl
3d76dfe8c2e26dc42b97fdf086ce1fa5  numpy-2.2.0-cp313-cp313t-macosx_14_0_x86_64.whl
b70ea00b40fb7d1b5d84868d8a073afb  numpy-2.2.0-cp313-cp313t-manylinux_2_17_aarch64.manylinux2014_aarch64.whl
a6bc7090a4e2b1e9deabd0671c691129  numpy-2.2.0-cp313-cp313t-manylinux_2_17_x86_64.manylinux2014_x86_64.whl
9789193a075e8d494851fe7955a23af7  numpy-2.2.0-cp313-cp313t-musllinux_1_2_aarch64.whl
8c199d25bd806f737950428232b0dfa5  numpy-2.2.0-cp313-cp313t-musllinux_1_2_x86_64.whl
1f566cfe4880ca30a591a828634da429  numpy-2.2.0-cp313-cp313t-win32.whl
eb9ea9f8fba78e7ae5b1415de1ee5c2c  numpy-2.2.0-cp313-cp313t-win_amd64.whl
9fbe2640c73e4f391019db5af6e854f5  numpy-2.2.0-pp310-pypy310_pp73-macosx_10_15_x86_64.whl
fc89986fda7ba19c7c50712f1fc1e342  numpy-2.2.0-pp310-pypy310_pp73-macosx_14_0_x86_64.whl
d76c5769a3fdfb9e25b3c1a951bd021f  numpy-2.2.0-pp310-pypy310_pp73-manylinux_2_17_x86_64.manylinux2014_x86_64.whl
c138d726fee19ec6ba85eaa2ba9a3390  numpy-2.2.0-pp310-pypy310_pp73-win_amd64.whl
81a58d5fd26fe983162dc3cea2989b7a  numpy-2.2.0.tar.gz
SHA256
1e25507d85da11ff5066269d0bd25d06e0a0f2e908415534f3e603d2a78e4ffa  numpy-2.2.0-cp310-cp310-macosx_10_9_x86_64.whl
a62eb442011776e4036af5c8b1a00b706c5bc02dc15eb5344b0c750428c94219  numpy-2.2.0-cp310-cp310-macosx_11_0_arm64.whl
b606b1aaf802e6468c2608c65ff7ece53eae1a6874b3765f69b8ceb20c5fa78e  numpy-2.2.0-cp310-cp310-macosx_14_0_arm64.whl
36b2b43146f646642b425dd2027730f99bac962618ec2052932157e213a040e9  numpy-2.2.0-cp310-cp310-macosx_14_0_x86_64.whl
7fe8f3583e0607ad4e43a954e35c1748b553bfe9fdac8635c02058023277d1b3  numpy-2.2.0-cp310-cp310-manylinux_2_17_aarch64.manylinux2014_aarch64.whl
122fd2fcfafdefc889c64ad99c228d5a1f9692c3a83f56c292618a59aa60ae83  numpy-2.2.0-cp310-cp310-manylinux_2_17_x86_64.manylinux2014_x86_64.whl
3f2f5cddeaa4424a0a118924b988746db6ffa8565e5829b1841a8a3bd73eb59a  numpy-2.2.0-cp310-cp310-musllinux_1_2_aarch64.whl
7fe4bb0695fe986a9e4deec3b6857003b4cfe5c5e4aac0b95f6a658c14635e31  numpy-2.2.0-cp310-cp310-musllinux_1_2_x86_64.whl
b30042fe92dbd79f1ba7f6898fada10bdaad1847c44f2dff9a16147e00a93661  numpy-2.2.0-cp310-cp310-win32.whl
54dc1d6d66f8d37843ed281773c7174f03bf7ad826523f73435deb88ba60d2d4  numpy-2.2.0-cp310-cp310-win_amd64.whl
9874bc2ff574c40ab7a5cbb7464bf9b045d617e36754a7bc93f933d52bd9ffc6  numpy-2.2.0-cp311-cp311-macosx_10_9_x86_64.whl
0da8495970f6b101ddd0c38ace92edea30e7e12b9a926b57f5fabb1ecc25bb90  numpy-2.2.0-cp311-cp311-macosx_11_0_arm64.whl
0557eebc699c1c34cccdd8c3778c9294e8196df27d713706895edc6f57d29608  numpy-2.2.0-cp311-cp311-macosx_14_0_arm64.whl
3579eaeb5e07f3ded59298ce22b65f877a86ba8e9fe701f5576c99bb17c283da  numpy-2.2.0-cp311-cp311-macosx_14_0_x86_64.whl
40deb10198bbaa531509aad0cd2f9fadb26c8b94070831e2208e7df543562b74  numpy-2.2.0-cp311-cp311-manylinux_2_17_aarch64.manylinux2014_aarch64.whl
c2aed8fcf8abc3020d6a9ccb31dbc9e7d7819c56a348cc88fd44be269b37427e  numpy-2.2.0-cp311-cp311-manylinux_2_17_x86_64.manylinux2014_x86_64.whl
a222d764352c773aa5ebde02dd84dba3279c81c6db2e482d62a3fa54e5ece69b  numpy-2.2.0-cp311-cp311-musllinux_1_2_aarch64.whl
4e58666988605e251d42c2818c7d3d8991555381be26399303053b58a5bbf30d  numpy-2.2.0-cp311-cp311-musllinux_1_2_x86_64.whl
4723a50e1523e1de4fccd1b9a6dcea750c2102461e9a02b2ac55ffeae09a4410  numpy-2.2.0-cp311-cp311-win32.whl
16757cf28621e43e252c560d25b15f18a2f11da94fea344bf26c599b9cf54b73  numpy-2.2.0-cp311-cp311-win_amd64.whl
cff210198bb4cae3f3c100444c5eaa573a823f05c253e7188e1362a5555235b3  numpy-2.2.0-cp312-cp312-macosx_10_13_x86_64.whl
58b92a5828bd4d9aa0952492b7de803135038de47343b2aa3cc23f3b71a3dc4e  numpy-2.2.0-cp312-cp312-macosx_11_0_arm64.whl
ebe5e59545401fbb1b24da76f006ab19734ae71e703cdb4a8b347e84a0cece67  numpy-2.2.0-cp312-cp312-macosx_14_0_arm64.whl
e2b8cd48a9942ed3f85b95ca4105c45758438c7ed28fff1e4ce3e57c3b589d8e  numpy-2.2.0-cp312-cp312-macosx_14_0_x86_64.whl
57fcc997ffc0bef234b8875a54d4058afa92b0b0c4223fc1f62f24b3b5e86038  numpy-2.2.0-cp312-cp312-manylinux_2_17_aarch64.manylinux2014_aarch64.whl
85ad7d11b309bd132d74397fcf2920933c9d1dc865487128f5c03d580f2c3d03  numpy-2.2.0-cp312-cp312-manylinux_2_17_x86_64.manylinux2014_x86_64.whl
cb24cca1968b21355cc6f3da1a20cd1cebd8a023e3c5b09b432444617949085a  numpy-2.2.0-cp312-cp312-musllinux_1_2_aarch64.whl
0798b138c291d792f8ea40fe3768610f3c7dd2574389e37c3f26573757c8f7ef  numpy-2.2.0-cp312-cp312-musllinux_1_2_x86_64.whl
afe8fb968743d40435c3827632fd36c5fbde633b0423da7692e426529b1759b1  numpy-2.2.0-cp312-cp312-win32.whl
3a4199f519e57d517ebd48cb76b36c82da0360781c6a0353e64c0cac30ecaad3  numpy-2.2.0-cp312-cp312-win_amd64.whl
f8c8b141ef9699ae777c6278b52c706b653bf15d135d302754f6b2e90eb30367  numpy-2.2.0-cp313-cp313-macosx_10_13_x86_64.whl
0f0986e917aca18f7a567b812ef7ca9391288e2acb7a4308aa9d265bd724bdae  numpy-2.2.0-cp313-cp313-macosx_11_0_arm64.whl
1c92113619f7b272838b8d6702a7f8ebe5edea0df48166c47929611d0b4dea69  numpy-2.2.0-cp313-cp313-macosx_14_0_arm64.whl
5a145e956b374e72ad1dff82779177d4a3c62bc8248f41b80cb5122e68f22d13  numpy-2.2.0-cp313-cp313-macosx_14_0_x86_64.whl
18142b497d70a34b01642b9feabb70156311b326fdddd875a9981f34a369b671  numpy-2.2.0-cp313-cp313-manylinux_2_17_aarch64.manylinux2014_aarch64.whl
a7d41d1612c1a82b64697e894b75db6758d4f21c3ec069d841e60ebe54b5b571  numpy-2.2.0-cp313-cp313-manylinux_2_17_x86_64.manylinux2014_x86_64.whl
a98f6f20465e7618c83252c02041517bd2f7ea29be5378f09667a8f654a5918d  numpy-2.2.0-cp313-cp313-musllinux_1_2_aarch64.whl
e09d40edfdb4e260cb1567d8ae770ccf3b8b7e9f0d9b5c2a9992696b30ce2742  numpy-2.2.0-cp313-cp313-musllinux_1_2_x86_64.whl
3905a5fffcc23e597ee4d9fb3fcd209bd658c352657548db7316e810ca80458e  numpy-2.2.0-cp313-cp313-win32.whl
a184288538e6ad699cbe6b24859206e38ce5fba28f3bcfa51c90d0502c1582b2  numpy-2.2.0-cp313-cp313-win_amd64.whl
7832f9e8eb00be32f15fdfb9a981d6955ea9adc8574c521d48710171b6c55e95  numpy-2.2.0-cp313-cp313t-macosx_10_13_x86_64.whl
f0dd071b95bbca244f4cb7f70b77d2ff3aaaba7fa16dc41f58d14854a6204e6c  numpy-2.2.0-cp313-cp313t-macosx_11_0_arm64.whl
b0b227dcff8cdc3efbce66d4e50891f04d0a387cce282fe1e66199146a6a8fca  numpy-2.2.0-cp313-cp313t-macosx_14_0_arm64.whl
6ab153263a7c5ccaf6dfe7e53447b74f77789f28ecb278c3b5d49db7ece10d6d  numpy-2.2.0-cp313-cp313t-macosx_14_0_x86_64.whl
e500aba968a48e9019e42c0c199b7ec0696a97fa69037bea163b55398e390529  numpy-2.2.0-cp313-cp313t-manylinux_2_17_aarch64.manylinux2014_aarch64.whl
440cfb3db4c5029775803794f8638fbdbf71ec702caf32735f53b008e1eaece3  numpy-2.2.0-cp313-cp313t-manylinux_2_17_x86_64.manylinux2014_x86_64.whl
a55dc7a7f0b6198b07ec0cd445fbb98b05234e8b00c5ac4874a63372ba98d4ab  numpy-2.2.0-cp313-cp313t-musllinux_1_2_aarch64.whl
4bddbaa30d78c86329b26bd6aaaea06b1e47444da99eddac7bf1e2fab717bd72  numpy-2.2.0-cp313-cp313t-musllinux_1_2_x86_64.whl
30bf971c12e4365153afb31fc73f441d4da157153f3400b82db32d04de1e4066  numpy-2.2.0-cp313-cp313t-win32.whl
d35717333b39d1b6bb8433fa758a55f1081543de527171543a2b710551d40881  numpy-2.2.0-cp313-cp313t-win_amd64.whl
e12c6c1ce84628c52d6367863773f7c8c8241be554e8b79686e91a43f1733773  numpy-2.2.0-pp310-pypy310_pp73-macosx_10_15_x86_64.whl
b6207dc8fb3c8cb5668e885cef9ec7f70189bec4e276f0ff70d5aa078d32c88e  numpy-2.2.0-pp310-pypy310_pp73-macosx_14_0_x86_64.whl
a50aeff71d0f97b6450d33940c7181b08be1441c6c193e678211bff11aa725e7  numpy-2.2.0-pp310-pypy310_pp73-manylinux_2_17_x86_64.manylinux2014_x86_64.whl
df12a1f99b99f569a7c2ae59aa2d31724e8d835fc7f33e14f4792e3071d11221  numpy-2.2.0-pp310-pypy310_pp73-win_amd64.whl
140dd80ff8981a583a60980be1a655068f8adebf7a45a06a6858c873fcdcd4a0  numpy-2.2.0.tar.gz

v2.1.3: 2.1.3 (Nov 2, 2024)

Compare Source

NumPy 2.1.3 Release Notes

NumPy 2.1.3 is a maintenance release that fixes bugs and regressions
discovered after the 2.1.2 release. This release also adds support
for free threaded Python 3.13 on Windows.

The Python versions supported by this release are 3.10-3.13.

Improvements

  • Fixed a number of issues around promotion for string ufuncs with
    StringDType arguments. Mixing StringDType and the fixed-width DTypes
    using the string ufuncs should now generate much more uniform
    results.

    (gh-27636)

Changes

  • numpy.fix now won't perform casting to a floating
    data-type for integer and boolean data-type input arrays.

    (gh-26766)

Contributors

A total of 15 people contributed to this release. People with a "+" by
their names contributed a patch for the first time.

  • Abhishek Kumar +
  • Austin +
  • Benjamin A. Beasley +
  • Charles Harris
  • Christian Lorentzen
  • Marcel Telka +
  • Matti Picus
  • Michael Davidsaver +
  • Nathan Goldbaum
  • Peter Hawkins
  • Raghuveer Devulapalli
  • Ralf Gommers
  • Sebastian Berg
  • dependabot[bot]
  • kp2pml30 +

Pull requests merged

A total of 21 pull requests were merged for this release.

  • #​27512: MAINT: prepare 2.1.x for further development
  • #​27537: MAINT: Bump actions/cache from 4.0.2 to 4.1.1
  • #​27538: MAINT: Bump pypa/cibuildwheel from 2.21.2 to 2.21.3
  • #​27539: MAINT: MSVC does not support #warning directive
  • #​27543: BUG: Fix user dtype can-cast with python scalar during promotion
  • #​27561: DEV: bump python to 3.12 in environment.yml
  • #​27562: BLD: update vendored Meson to 1.5.2
  • #​27563: BUG: weighted quantile for some zero weights (#​27549)
  • #​27565: MAINT: Use miniforge for macos conda test.
  • #​27566: BUILD: satisfy gcc-13 pendantic errors
  • #​27569: BUG: handle possible error for PyTraceMallocTrack
  • #​27570: BLD: start building Windows free-threaded wheels [wheel build]
  • #​27571: BUILD: vendor tempita from Cython
  • #​27574: BUG: Fix warning "differs in levels of indirection" in npy_atomic.h...
  • #​27592: MAINT: Update Highway to latest
  • #​27593: BUG: Adjust numpy.i for SWIG 4.3 compatibility
  • #​27616: BUG: Fix Linux QEMU CI workflow
  • #​27668: BLD: Do not set __STDC_VERSION__ to zero during build
  • #​27669: ENH: fix wasm32 runtime type error in numpy._core
  • #​27672: BUG: Fix a reference count leak in npy_find_descr_for_scalar.
  • #​27673: BUG: fixes for StringDType/unicode promoters

Checksums

MD5
3f2f22827dd321ae86b5ab4fa888d0db  numpy-2.1.3-cp310-cp310-macosx_10_9_x86_64.whl
13da2761d1abe71731a2806537369115  numpy-2.1.3-cp310-cp310-macosx_11_0_arm64.whl
5aef4a78b69cd90d0f6fff8f88817991  numpy-2.1.3-cp310-cp310-macosx_14_0_arm64.whl
12da7f09cd5707634878f85845c9de10  numpy-2.1.3-cp310-cp310-macosx_14_0_x86_64.whl
5b999693362815b56855533469aea0ca  numpy-2.1.3-cp310-cp310-manylinux_2_17_aarch64.manylinux2014_aarch64.whl
8c49f457127bfb4f167c91583e5167af  numpy-2.1.3-cp310-cp310-manylinux_2_17_x86_64.manylinux2014_x86_64.whl
f31c0e80b18afc0c04cada401cbe0358  numpy-2.1.3-cp310-cp310-musllinux_1_1_x86_64.whl
2c0709812e27bcaf74d75ac8ed45614b  numpy-2.1.3-cp310-cp310-musllinux_1_2_aarch64.whl
a65b28800e78942b9e60e03e96cfd0c0  numpy-2.1.3-cp310-cp310-win32.whl
d8358545732fe4ee1ecf407b06567d81  numpy-2.1.3-cp310-cp310-win_amd64.whl
34942f9a1391532e2c3168043c0021d5  numpy-2.1.3-cp311-cp311-macosx_10_9_x86_64.whl
0d69ec06e303b5112788db68a8fdde1b  numpy-2.1.3-cp311-cp311-macosx_11_0_arm64.whl
da1988c8d3a9db5947a2bd51290b8b95  numpy-2.1.3-cp311-cp311-macosx_14_0_arm64.whl
b5eba73c2abaf5a81535f4b1034fe8d2  numpy-2.1.3-cp311-cp311-macosx_14_0_x86_64.whl
63cc090209718aa1d0f0fbd3fd03bc0b  numpy-2.1.3-cp311-cp311-manylinux_2_17_aarch64.manylinux2014_aarch64.whl
55f14ca7b55554d4a043369ae5f1837f  numpy-2.1.3-cp311-cp311-manylinux_2_17_x86_64.manylinux2014_x86_64.whl
4e58e0645d81ff84c0fb75311d2a97d6  numpy-2.1.3-cp311-cp311-musllinux_1_1_x86_64.whl
30235088a5f86d1f343bfec458f6292d  numpy-2.1.3-cp311-cp311-musllinux_1_2_aarch64.whl
c80a03952b2f4950f1eb9d1656413fec  numpy-2.1.3-cp311-cp311-win32.whl
d8c1a5a441b89591af8f09dfa0b2d4d5  numpy-2.1.3-cp311-cp311-win_amd64.whl
2cebcea71e71e8b09a25179b240ee240  numpy-2.1.3-cp312-cp312-macosx_10_13_x86_64.whl
faf5df4bd35ca362795cda193da49591  numpy-2.1.3-cp312-cp312-macosx_11_0_arm64.whl
573f195910fc3b3e9ac5379816280f89  numpy-2.1.3-cp312-cp312-macosx_14_0_arm64.whl
900548b2acb82ed0e306943fb68de802  numpy-2.1.3-cp312-cp312-macosx_14_0_x86_64.whl
81cded28bb87c4987b1d975fe768c3a1  numpy-2.1.3-cp312-cp312-manylinux_2_17_aarch64.manylinux2014_aarch64.whl
2b83cb346bca97475fa5e39e704c45f1  numpy-2.1.3-cp312-cp312-manylinux_2_17_x86_64.manylinux2014_x86_64.whl
06d8593cb7a2aae157e028c3d4cb3c96  numpy-2.1.3-cp312-cp312-musllinux_1_1_x86_64.whl
eea8b148a6a2fee37b87291043e00bda  numpy-2.1.3-cp312-cp312-musllinux_1_2_aarch64.whl
d407b7c48457789914f28004f41d6ea2  numpy-2.1.3-cp312-cp312-win32.whl
117574ee1a645e63a6d69e20c8673665  numpy-2.1.3-cp312-cp312-win_amd64.whl
0c9ffd1f1f1e96186f30a578b85da653  numpy-2.1.3-cp313-cp313-macosx_10_13_x86_64.whl
cd430b2caf09d21680616aef5d4a439d  numpy-2.1.3-cp313-cp313-macosx_11_0_arm64.whl
b431935148221b79bda9490b1d069e3c  numpy-2.1.3-cp313-cp313-macosx_14_0_arm64.whl
b3ff577c78097b187bd58f20b6e88642  numpy-2.1.3-cp313-cp313-macosx_14_0_x86_64.whl
8186f86f8d94a5505e6dcebe6c056ab7  numpy-2.1.3-cp313-cp313-manylinux_2_17_aarch64.manylinux2014_aarch64.whl
2c5b2381a4a4e3d9865ccb346d44a7ed  numpy-2.1.3-cp313-cp313-manylinux_2_17_x86_64.manylinux2014_x86_64.whl
85786d12388d60b904c02eb12df55b37  numpy-2.1.3-cp313-cp313-musllinux_1_1_x86_64.whl
da68282c0418a22730643906e5dd58a1  numpy-2.1.3-cp313-cp313-musllinux_1_2_aarch64.whl
fe47e181a70d3e865e5d6a27e5fa71cd  numpy-2.1.3-cp313-cp313-win32.whl
8b7f290784c95cf620e0ac1af5470f1d  numpy-2.1.3-cp313-cp313-win_amd64.whl
4f0c3f8c81cb6bd43a9f1f7bef7db82d  numpy-2.1.3-cp313-cp313t-macosx_10_13_x86_64.whl
133905fd003c9504fc5bb9ce71e4103b  numpy-2.1.3-cp313-cp313t-macosx_11_0_arm64.whl
12fe4f265dbda251309f109cbcd46f07  numpy-2.1.3-cp313-cp313t-macosx_14_0_arm64.whl
b60e418506b969e6df2c0d600bf3c6d4  numpy-2.1.3-cp313-cp313t-macosx_14_0_x86_64.whl
c2b7160b748f4c1c483a7954e5024250  numpy-2.1.3-cp313-cp313t-manylinux_2_17_aarch64.manylinux2014_aarch64.whl
8097ddb45c8c821085c19d940bcbe6de  numpy-2.1.3-cp313-cp313t-manylinux_2_17_x86_64.manylinux2014_x86_64.whl
209f55dc1ed6da23a5ea3e11ca962308  numpy-2.1.3-cp313-cp313t-musllinux_1_1_x86_64.whl
06a1792849b601c7bdd38e39bc5cb5f1  numpy-2.1.3-cp313-cp313t-musllinux_1_2_aarch64.whl
86630bf207e8cbe6933232cb2a47a6c0  numpy-2.1.3-cp313-cp313t-win32.whl
6af9109b82c0acdcf8b0e81dc0e4c517  numpy-2.1.3-cp313-cp313t-win_amd64.whl
c7e821e086346afc0078acb237f30431  numpy-2.1.3-pp310-pypy310_pp73-macosx_10_15_x86_64.whl
5b938b2da78b1c84044df8cdb2e8e63a  numpy-2.1.3-pp310-pypy310_pp73-macosx_14_0_x86_64.whl
ef251f3b6aa022b1c2fac14889d6d9d3  numpy-2.1.3-pp310-pypy310_pp73-manylinux_2_17_x86_64.manylinux2014_x86_64.whl
356c7bb6067ae0dccc4a54efc1879e74  numpy-2.1.3-pp310-pypy310_pp73-win_amd64.whl
11096358375945114577a0c82b2c6038  numpy-2.1.3.tar.gz
SHA256
c894b4305373b9c5576d7a12b473702afdf48ce5369c074ba304cc5ad8730dff  numpy-2.1.3-cp310-cp310-macosx_10_9_x86_64.whl
b47fbb433d3260adcd51eb54f92a2ffbc90a4595f8970ee00e064c644ac788f5  numpy-2.1.3-cp310-cp310-macosx_11_0_arm64.whl
825656d0743699c529c5943554d223c021ff0494ff1442152ce887ef4f7561a1  numpy-2.1.3-cp310-cp310-macosx_14_0_arm64.whl
6a4825252fcc430a182ac4dee5a505053d262c807f8a924603d411f6718b88fd  numpy-2.1.3-cp310-cp310-macosx_14_0_x86_64.whl
e711e02f49e176a01d0349d82cb5f05ba4db7d5e7e0defd026328e5cfb3226d3  numpy-2.1.3-cp310-cp310-manylinux_2_17_aarch64.manylinux2014_aarch64.whl
78574ac2d1a4a02421f25da9559850d59457bac82f2b8d7a44fe83a64f770098  numpy-2.1.3-cp310-cp310-manylinux_2_17_x86_64.manylinux2014_x86_64.whl
c7662f0e3673fe4e832fe07b65c50342ea27d989f92c80355658c7f888fcc83c  numpy-2.1.3-cp310-cp310-musllinux_1_1_x86_64.whl
fa2d1337dc61c8dc417fbccf20f6d1e139896a30721b7f1e832b2bb6ef4eb6c4  numpy-2.1.3-cp310-cp310-musllinux_1_2_aarch64.whl
72dcc4a35a8515d83e76b58fdf8113a5c969ccd505c8a946759b24e3182d1f23  numpy-2.1.3-cp310-cp310-win32.whl
ecc76a9ba2911d8d37ac01de72834d8849e55473457558e12995f4cd53e778e0  numpy-2.1.3-cp310-cp310-win_amd64.whl
4d1167c53b93f1f5d8a139a742b3c6f4d429b54e74e6b57d0eff40045187b15d  numpy-2.1.3-cp311-cp311-macosx_10_9_x86_64.whl
c80e4a09b3d95b4e1cac08643f1152fa71a0a821a2d4277334c88d54b2219a41  numpy-2.1.3-cp311-cp311-macosx_11_0_arm64.whl
576a1c1d25e9e02ed7fa5477f30a127fe56debd53b8d2c89d5578f9857d03ca9  numpy-2.1.3-cp311-cp311-macosx_14_0_arm64.whl
973faafebaae4c0aaa1a1ca1ce02434554d67e628b8d805e61f874b84e136b09  numpy-2.1.3-cp311-cp311-macosx_14_0_x86_64.whl
762479be47a4863e261a840e8e01608d124ee1361e48b96916f38b119cfda04a  numpy-2.1.3-cp311-cp311-manylinux_2_17_aarch64.manylinux2014_aarch64.whl
bc6f24b3d1ecc1eebfbf5d6051faa49af40b03be1aaa781ebdadcbc090b4539b  numpy-2.1.3-cp311-cp311-manylinux_2_17_x86_64.manylinux2014_x86_64.whl
17ee83a1f4fef3c94d16dc1802b998668b5419362c8a4f4e8a491de1b41cc3ee  numpy-2.1.3-cp311-cp311-musllinux_1_1_x86_64.whl
15cb89f39fa6d0bdfb600ea24b250e5f1a3df23f901f51c8debaa6a5d122b2f0  numpy-2.1.3-cp311-cp311-musllinux_1_2_aarch64.whl
d9beb777a78c331580705326d2367488d5bc473b49a9bc3036c154832520aca9  numpy-2.1.3-cp311-cp311-win32.whl
d89dd2b6da69c4fff5e39c28a382199ddedc3a5be5390115608345dec660b9e2  numpy-2.1.3-cp311-cp311-win_amd64.whl
f55ba01150f52b1027829b50d70ef1dafd9821ea82905b63936668403c3b471e  numpy-2.1.3-cp312-cp312-macosx_10_13_x86_64.whl
13138eadd4f4da03074851a698ffa7e405f41a0845a6b1ad135b81596e4e9958  numpy-2.1.3-cp312-cp312-macosx_11_0_arm64.whl
a6b46587b14b888e95e4a24d7b13ae91fa22386c199ee7b418f449032b2fa3b8  numpy-2.1.3-cp312-cp312-macosx_14_0_arm64.whl
0fa14563cc46422e99daef53d725d0c326e99e468a9320a240affffe87852564  numpy-2.1.3-cp312-cp312-macosx_14_0_x86_64.whl
8637dcd2caa676e475503d1f8fdb327bc495554e10838019651b76d17b98e512  numpy-2.1.3-cp312-cp312-manylinux_2_17_aarch64.manylinux2014_aarch64.whl
2312b2aa89e1f43ecea6da6ea9a810d06aae08321609d8dc0d0eda6d946a541b  numpy-2.1.3-cp312-cp312-manylinux_2_17_x86_64.manylinux2014_x86_64.whl
a38c19106902bb19351b83802531fea19dee18e5b37b36454f27f11ff956f7fc  numpy-2.1.3-cp312-cp312-musllinux_1_1_x86_64.whl
02135ade8b8a84011cbb67dc44e07c58f28575cf9ecf8ab304e51c05528c19f0  numpy-2.1.3-cp312-cp312-musllinux_1_2_aarch64.whl
e6988e90fcf617da2b5c78902fe8e668361b43b4fe26dbf2d7b0f8034d4cafb9  numpy-2.1.3-cp312-cp312-win32.whl
0d30c543f02e84e92c4b1f415b7c6b5326cbe45ee7882b6b77db7195fb971e3a  numpy-2.1.3-cp312-cp312-win_amd64.whl
96fe52fcdb9345b7cd82ecd34547fca4321f7656d500eca497eb7ea5a926692f  numpy-2.1.3-cp313-cp313-macosx_10_13_x86_64.whl
f653490b33e9c3a4c1c01d41bc2aef08f9475af51146e4a7710c450cf9761598  numpy-2.1.3-cp313-cp313-macosx_11_0_arm64.whl
dc258a761a16daa791081d026f0ed4399b582712e6fc887a95af09df10c5ca57  numpy-2.1.3-cp313-cp313-macosx_14_0_arm64.whl
016d0f6f5e77b0f0d45d77387ffa4bb89816b57c835580c3ce8e099ef830befe  numpy-2.1.3-cp313-cp313-macosx_14_0_x86_64.whl
c181ba05ce8299c7aa3125c27b9c2167bca4a4445b7ce73d5febc411ca692e43  numpy-2.1.3-cp313-cp313-manylinux_2_17_aarch64.manylinux2014_aarch64.whl
5641516794ca9e5f8a4d17bb45446998c6554704d888f86df9b200e66bdcce56  numpy-2.1.3-cp313-cp313-manylinux_2_17_x86_64.manylinux2014_x86_64.whl
ea4dedd6e394a9c180b33c2c872b92f7ce0f8e7ad93e9585312b0c5a04777a4a  numpy-2.1.3-cp313-cp313-musllinux_1_1_x86_64.whl
b0df3635b9c8ef48bd3be5f862cf71b0a4716fa0e702155c45067c6b711ddcef  numpy-2.1.3-cp313-cp313-musllinux_1_2_aarch64.whl
50ca6aba6e163363f132b5c101ba078b8cbd3fa92c7865fd7d4d62d9779ac29f  numpy-2.1.3-cp313-cp313-win32.whl
747641635d3d44bcb380d950679462fae44f54b131be347d5ec2bce47d3df9ed  numpy-2.1.3-cp313-cp313-win_amd64.whl
996bb9399059c5b82f76b53ff8bb686069c05acc94656bb259b1d63d04a9506f  numpy-2.1.3-cp313-cp313t-macosx_10_13_x86_64.whl
45966d859916ad02b779706bb43b954281db43e185015df6eb3323120188f9e4  numpy-2.1.3-cp313-cp313t-macosx_11_0_arm64.whl
baed7e8d7481bfe0874b566850cb0b85243e982388b7b23348c6db2ee2b2ae8e  numpy-2.1.3-cp313-cp313t-macosx_14_0_arm64.whl
a9f7f672a3388133335589cfca93ed468509cb7b93ba3105fce780d04a6576a0  numpy-2.1.3-cp313-cp313t-macosx_14_0_x86_64.whl
d7aac50327da5d208db2eec22eb11e491e3fe13d22653dce51b0f4109101b408  numpy-2.1.3-cp313-cp313t-manylinux_2_17_aarch64.manylinux2014_aarch64.whl
4394bc0dbd074b7f9b52024832d16e019decebf86caf909d94f6b3f77a8ee3b6  numpy-2.1.3-cp313-cp313t-manylinux_2_17_x86_64.manylinux2014_x86_64.whl
50d18c4358a0a8a53f12a8ba9d772ab2d460321e6a93d6064fc22443d189853f  numpy-2.1.3-cp313-cp313t-musllinux_1_1_x86_64.whl
14e253bd43fc6b37af4921b10f6add6925878a42a0c5fe83daee390bca80bc17  numpy-2.1.3-cp313-cp313t-musllinux_1_2_aarch64.whl
08788d27a5fd867a663f6fc753fd7c3ad7e92747efc73c53bca2f19f8bc06f48  numpy-2.1.3-cp313-cp313t-win32.whl
2564fbdf2b99b3f815f2107c1bbc93e2de8ee655a69c261363a1172a79a257d4  numpy-2.1.3-cp313-cp313t-win_amd64.whl
4f2015dfe437dfebbfce7c85c7b53d81ba49e71ba7eadbf1df40c915af75979f  numpy-2.1.3-pp310-pypy310_pp73-macosx_10_15_x86_64.whl
3522b0dfe983a575e6a9ab3a4a4dfe156c3e428468ff08ce582b9bb6bd1d71d4  numpy-2.1.3-pp310-pypy310_pp73-macosx_14_0_x86_64.whl
c006b607a865b07cd981ccb218a04fc86b600411d83d6fc261357f1c0966755d  numpy-2.1.3-pp310-pypy310_pp73-manylinux_2_17_x86_64.manylinux2014_x86_64.whl
e14e26956e6f1696070788252dcdff11b4aca4c3e8bd166e0df1bb8f315a67cb  numpy-2.1.3-pp310-pypy310_pp73-win_amd64.whl
aa08e04e08aaf974d4458def539dece0d28146d866a39da5639596f4921fd761  numpy-2.1.3.tar.gz

v2.1.2

Compare Source

v2.1.1: 2.1.1 (Sep 3, 2024)

Compare Source

NumPy 2.1.1 Release Notes

NumPy 2.1.1 is a maintenance release that fixes bugs and regressions
discovered after the 2.1.0 release.

The Python versions supported by this release are 3.10-3.13.

Contributors

A total of 7 people contributed to this release. People with a "+" by
their names contributed a patch for the first time.

  • Andrew Nelson
  • Charles Harris
  • Mateusz Sokół
  • Maximilian Weigand +
  • Nathan Goldbaum
  • Pieter Eendebak
  • Sebastian Berg
Pull requests merged

A total of 10 pull requests were merged for this release.

  • #​27236: REL: Prepare for the NumPy 2.1.0 release [wheel build]
  • #​27252: MAINT: prepare 2.1.x for further development
  • #​27259: BUG: revert unintended change in the return value of set_printoptions
  • #​27266: BUG: fix reference counting bug in __array_interface__ implementation...
  • #​27267: TST: Add regression test for missing descr in array-interface
  • #​27276: BUG: Fix #​27256 and #​27257
  • #​27278: BUG: Fix array_equal for numeric and non-numeric scalar types
  • #​27287: MAINT: Update maintenance/2.1.x after the 2.0.2 release
  • #​27303: BLD: cp311- macosx_arm64 wheels [wheel build]
  • #​27304: BUG: f2py: better handle filtering of public/private subroutines
Checksums
MD5
3053a97400db800b7377749e691eb39e  numpy-2.1.1-cp310-cp310-macosx_10_9_x86_64.whl
84b752a2220dce7c96ff89eef4f4aec3  numpy-2.1.1-cp310-cp310-macosx_11_0_arm64.whl
47ed4f704a64261f07ca24ef2e674524  numpy-2.1.1-cp310-cp310-macosx_14_0_arm64.whl
b8a45caa870aee980c298053cf064d28  numpy-2.1.1-cp310-cp310-macosx_14_0_x86_64.whl
e097ad5eee572b791b4a25eedad6df4a  numpy-2.1.1-cp310-cp310-manylinux_2_17_aarch64.manylinux2014_aarch64.whl
ae502c99315884cda7f0236a07c035c4  numpy-2.1.1-cp310-cp310-manylinux_2_17_x86_64.manylinux2014_x86_64.whl
841a859d975c55090c0b60b72aab93a3  numpy-2.1.1-cp310-cp310-musllinux_1_1_x86_64.whl
d51be2b17f5b87aac64ab80fdfafc85e  numpy-2.1.1-cp310-cp310-musllinux_1_2_aarch64.whl
1f8249bd725397c6233fe6a0e8ad18b1  numpy-2.1.1-cp310-cp310-win32.whl
d38d6f06589c1ec104a6a31ff6035781  numpy-2.1.1-cp310-cp310-win_amd64.whl
6a18fe3029aae00986975250313bf16f  numpy-2.1.1-cp311-cp311-macosx_10_9_x86_64.whl
5b0b3aa01fbd0b5a8b0f354bb878351e  numpy-2.1.1-cp311-cp311-macosx_11_0_arm64.whl
1c492dad399abe7b97274b4c6c12ae53  numpy-2.1.1-cp311-cp311-macosx_14_0_arm64.whl
4d55d91e71b62eb5fa6561c606524f60  numpy-2.1.1-cp311-cp311-macosx_14_0_x86_64.whl
88e99ecd063c178f25bc08d20792a9bf  numpy-2.1.1-cp311-cp311-manylinux_2_17_aarch64.manylinux2014_aarch64.whl
f3c8b0e4fb059b9219e8ec86d9fda861  numpy-2.1.1-cp311-cp311-manylinux_2_17_x86_64.manylinux2014_x86_64.whl
df632b5fed7eb78d39e7194d2475c19b  numpy-2.1.1-cp311-cp311-musllinux_1_1_x86_64.whl
65499daccdb178d26e322d9f359cf146  numpy-2.1.1-cp311-cp311-musllinux_1_2_aarch64.whl
eb97327fd7aa6027e2409d0dcca1129a  numpy-2.1.1-cp311-cp311-win32.whl
9e4b05b38cbff22c2bdfead528b9d2bc  numpy-2.1.1-cp311-cp311-win_amd64.whl
6b8a359bb865b5c624fd9ffc848393e1  numpy-2.1.1-cp312-cp312-macosx_10_9_x86_64.whl
eaf8dce312efa2b0f17ad46612fb1681  numpy-2.1.1-cp312-cp312-macosx_11_0_arm64.whl
c861ff048b336284fe7c0791b1a6b0b4  numpy-2.1.1-cp312-cp312-macosx_14_0_arm64.whl
7e1befccfe729dc5d6c450a5fb6b801c  numpy-2.1.1-cp312-cp312-macosx_14_0_x86_64.whl
ea0a401ef653a167221987a10cbef260  numpy-2.1.1-cp312-cp312-manylinux_2_17_aarch64.manylinux2014_aarch64.whl
97326ac792d26f2e536a519c82f2d6bc  numpy-2.1.1-cp312-cp312-manylinux_2_17_x86_64.manylinux2014_x86_64.whl
fdd2a82232c03d11bbc7cec0a8e01ab0  numpy-2.1.1-cp312-cp312-musllinux_1_1_x86_64.whl
0d6716e9a7b2c0d6e5ace9c01b9bca01  numpy-2.1.1-cp312-cp312-musllinux_1_2_aarch64.whl
ba589ed2a79c88187c3b8574ae72a1c7  numpy-2.1.1-cp312-cp312-win32.whl
806ca7c1e2a2013b786edbb619f6da47  numpy-2.1.1-cp312-cp312-win_amd64.whl
647665353e5af5884df4e51610990c22  numpy-2.1.1-cp313-cp313-macosx_10_13_x86_64.whl
bfd3b3c5c4616ef99d917bd94d39114a  numpy-2.1.1-cp313-cp313-macosx_11_0_arm64.whl
cb989095f9c74e3b32250a984390faeb  numpy-2.1.1-cp313-cp313-macosx_14_0_arm64.whl
55ad7548e58f61b9a4f91749e36d237f  numpy-2.1.1-cp313-cp313-macosx_14_0_x86_64.whl
5bc73d67dd1032524bfd36ef877b09e4  numpy-2.1.1-cp313-cp313-manylinux_2_17_aarch64.manylinux2014_aarch64.whl
c7dfb09db8284cb75296f708c3f77ea3  numpy-2.1.1-cp313-cp313-manylinux_2_17_x86_64.manylinux2014_x86_64.whl
7cf90ce1b844a97aeea1a5b8c71fb49b  numpy-2.1.1-cp313-cp313-musllinux_1_1_x86_64.whl
6ec8baeac5f979a3b98017679d457bbc  numpy-2.1.1-cp313-cp313-musllinux_1_2_aarch64.whl
1f198cb5210c76faae81359a83d58230  numpy-2.1.1-cp313-cp313-win32.whl
1766258213ad41f7e36f2209ee6d2a30  numpy-2.1.1-cp313-cp313-win_amd64.whl
f0a7a0456308dbeb739ad886f1632f16  numpy-2.1.1-cp313-cp313t-macosx_10_13_x86_64.whl
302c9cf7b4aa695974500ee1935a92c9  numpy-2.1.1-cp313-cp313t-macosx_11_0_arm64.whl
f4aa7d784992abb9bd9fe9db09c01c06  numpy-2.1.1-cp313-cp313t-macosx_14_0_arm64.whl
3bb4ae9906499609769f1774438149a5  numpy-2.1.1-cp313-cp313t-macosx_14_0_x86_64.whl
ff6b9e1993d3d540074736014b1d13af  numpy-2.1.1-cp313-cp313t-manylinux_2_17_aarch64.manylinux2014_aarch64.whl
749489c091ee9c00abf1ad1ef822c3ca  numpy-2.1.1-cp313-cp313t-manylinux_2_17_x86_64.manylinux2014_x86_64.whl
32d2daf4064031f365ced5036757ad8b  numpy-2.1.1-cp313-cp313t-musllinux_1_1_x86_64.whl
603dfe4ef56c01e1fc0dcc9d5e3090ed  numpy-2.1.1-cp313-cp313t-musllinux_1_2_aarch64.whl
70fa2d3b78633bb6061c90e17364f27f  numpy-2.1.1-pp310-pypy310_pp73-macosx_10_15_x86_64.whl
9a430be5d14b689ed051eccc540dfbdc  numpy-2.1.1-pp310-pypy310_pp73-macosx_14_0_x86_64.whl
7291ff124e471d32c03464da18ff108d  numpy-2.1.1-pp310-pypy310_pp73-manylinux_2_17_x86_64.manylinux2014_x86_64.whl
e56ce141724af119c7c647a8705827a5  numpy-2.1.1-pp310-pypy310_pp73-win_amd64.whl
f63b4750618bfa5490f10cae37fde998  numpy-2.1.1.tar.gz
SHA256
c8a0e34993b510fc19b9a2ce7f31cb8e94ecf6e924a40c0c9dd4f62d0aac47d9  numpy-2.1.1-cp310-cp310-macosx_10_9_x86_64.whl
7dd86dfaf7c900c0bbdcb8b16e2f6ddf1eb1fe39c6c8cca6e94844ed3152a8fd  numpy-2.1.1-cp310-cp310-macosx_11_0_arm64.whl
5889dd24f03ca5a5b1e8a90a33b5a0846d8977565e4ae003a63d22ecddf6782f  numpy-2.1.1-cp310-cp310-macosx_14_0_arm64.whl
59ca673ad11d4b84ceb385290ed0ebe60266e356641428c845b39cd9df6713ab  numpy-2.1.1-cp310-cp310-macosx_14_0_x86_64.whl
13ce49a34c44b6de5241f0b38b07e44c1b2dcacd9e36c30f9c2fcb1bb5135db7  numpy-2.1.1-cp310-cp310-manylinux_2_17_aarch64.manylinux2014_aarch64.whl
913cc1d311060b1d409e609947fa1b9753701dac96e6581b58afc36b7ee35af6  numpy-2.1.1-cp310-cp310-manylinux_2_17_x86_64.manylinux2014_x86_64.whl
caf5d284ddea7462c32b8d4a6b8af030b6c9fd5332afb70e7414d7fdded4bfd0  numpy-2.1.1-cp310-cp310-musllinux_1_1_x86_64.whl
57eb525e7c2a8fdee02d731f647146ff54ea8c973364f3b850069ffb42799647  numpy-2.1.1-cp310-cp310-musllinux_1_2_aarch64.whl
9a8e06c7a980869ea67bbf551283bbed2856915f0a792dc32dd0f9dd2fb56728  numpy-2.1.1-cp310-cp310-win32.whl
d10c39947a2d351d6d466b4ae83dad4c37cd6c3cdd6d5d0fa797da56f710a6ae  numpy-2.1.1-cp310-cp310-win_amd64.whl
0d07841fd284718feffe7dd17a63a2e6c78679b2d386d3e82f44f0108c905550  numpy-2.1.1-cp311-cp311-macosx_10_9_x86_64.whl
b5613cfeb1adfe791e8e681128f5f49f22f3fcaa942255a6124d58ca59d9528f  numpy-2.1.1-cp311-cp311-macosx_11_0_arm64.whl
0b8cc2715a84b7c3b161f9ebbd942740aaed913584cae9cdc7f8ad5ad41943d0  numpy-2.1.1-cp311-cp311-macosx_14_0_arm64.whl
b49742cdb85f1f81e4dc1b39dcf328244f4d8d1ded95dea725b316bd2cf18c95  numpy-2.1.1-cp311-cp311-macosx_14_0_x86_64.whl
e8d5f8a8e3bc87334f025194c6193e408903d21ebaeb10952264943a985066ca  numpy-2.1.1-cp311-cp311-manylinux_2_17_aarch64.manylinux2014_aarch64.whl
d51fc141ddbe3f919e91a096ec739f49d686df8af254b2053ba21a910ae518bf  numpy-2.1.1-cp311-cp311-manylinux_2_17_x86_64.manylinux2014_x86_64.whl
98ce7fb5b8063cfdd86596b9c762bf2b5e35a2cdd7e967494ab78a1fa7f8b86e  numpy-2.1.1-cp311-cp311-musllinux_1_1_x86_64.whl
24c2ad697bd8593887b019817ddd9974a7f429c14a5469d7fad413f28340a6d2  numpy-2.1.1-cp311-cp311-musllinux_1_2_aarch64.whl
397bc5ce62d3fb73f304bec332171535c187e0643e176a6e9421a6e3eacef06d  numpy-2.1.1-cp311-cp311-win32.whl
ae8ce252404cdd4de56dcfce8b11eac3c594a9c16c231d081fb705cf23bd4d9e  numpy-2.1.1-cp311-cp311-win_amd64.whl
7c803b7934a7f59563db459292e6aa078bb38b7ab1446ca38dd138646a38203e  numpy-2.1.1-cp312-cp312-macosx_10_9_x86_64.whl
6435c48250c12f001920f0751fe50c0348f5f240852cfddc5e2f97e007544cbe  numpy-2.1.1-cp312-cp312-macosx_11_0_arm64.whl
3269c9eb8745e8d975980b3a7411a98976824e1fdef11f0aacf76147f662b15f  numpy-2.1.1-cp312-cp312-macosx_14_0_arm64.whl
fac6e277a41163d27dfab5f4ec1f7a83fac94e170665a4a50191b545721c6521  numpy-2.1.1-cp312-cp312-macosx_14_0_x86_64.whl
fcd8f556cdc8cfe35e70efb92463082b7f43dd7e547eb071ffc36abc0ca4699b  numpy-2.1.1-cp312-cp312-manylinux_2_17_aarch64.manylinux2014_aarch64.whl
d2b9cd92c8f8e7b313b80e93cedc12c0112088541dcedd9197b5dee3738c1201  numpy-2.1.1-cp312-cp312-manylinux_2_17_x86_64.manylinux2014_x86_64.whl
afd9c680df4de71cd58582b51e88a61feed4abcc7530bcd3d48483f20fc76f2a  numpy-2.1.1-cp312-cp312-musllinux_1_1_x86_64.whl
8661c94e3aad18e1ea17a11f60f843a4933ccaf1a25a7c6a9182af70610b2313  numpy-2.1.1-cp312-cp312-musllinux_1_2_aarch64.whl
950802d17a33c07cba7fd7c3dcfa7d64705509206be1606f196d179e539111ed  numpy-2.1.1-cp312-cp312-win32.whl
3fc5eabfc720db95d68e6646e88f8b399bfedd235994016351b1d9e062c4b270  numpy-2.1.1-cp312-cp312-win_amd64.whl
046356b19d7ad1890c751b99acad5e82dc4a02232013bd9a9a712fddf8eb60f5  numpy-2.1.1-cp313-cp313-macosx_10_13_x86_64.whl
6e5a9cb2be39350ae6c8f79410744e80154df658d5bea06e06e0ac5bb75480d5  numpy-2.1.1-cp313-cp313-macosx_11_0_arm64.whl
d4c57b68c8ef5e1ebf47238e99bf27657511ec3f071c465f6b1bccbef12d4136  numpy-2.1.1-cp313-cp313-macosx_14_0_arm64.whl
8ae0fd135e0b157365ac7cc31fff27f07a5572bdfc38f9c2d43b2aff416cc8b0  numpy-2.1.1-cp313-cp313-macosx_14_0_x86_64.whl
981707f6b31b59c0c24bcda52e5605f9701cb46da4b86c2e8023656ad3e833cb  numpy-2.1.1-cp313-cp313-manylinux_2_17_aarch64.manylinux2014_aarch64.whl
2ca4b53e1e0b279142113b8c5eb7d7a877e967c306edc34f3b58e9be12fda8df  numpy-2.1.1-cp313-cp313-manylinux_2_17_x86_64.manylinux2014_x86_64.whl
e097507396c0be4e547ff15b13dc3866f45f3680f789c1a1301b07dadd3fbc78  numpy-2.1.1-cp313-cp313-musllinux_1_1_x86_64.whl
f7506387e191fe8cdb267f912469a3cccc538ab108471291636a96a54e599556  numpy-2.1.1-cp313-cp313-musllinux_1_2_aarch64.whl
251105b7c42abe40e3a689881e1793370cc9724ad50d64b30b358bbb3a97553b  numpy-2.1.1-cp313-cp313-win32.whl
f212d4f46b67ff604d11fff7cc62d36b3e8714edf68e44e9760e19be38c03eb0  numpy-2.1.1-cp313-cp313-win_amd64.whl
920b0911bb2e4414c50e55bd658baeb78281a47feeb064ab40c2b66ecba85553  numpy-2.1.1-cp313-cp313t-macosx_10_13_x86_64.whl
bab7c09454460a487e631ffc0c42057e3d8f2a9ddccd1e60c7bb8ed774992480  numpy-2.1.1-cp313-cp313t-macosx_11_0_arm64.whl
cea427d1350f3fd0d2818ce7350095c1a2ee33e30961d2f0fef48576ddbbe90f  numpy-2.1.1-cp313-cp313t-macosx_14_0_arm64.whl
e30356d530528a42eeba51420ae8bf6c6c09559051887196599d96ee5f536468  numpy-2.1.1-cp313-cp313t-macosx_14_0_x86_64.whl
e8dfa9e94fc127c40979c3eacbae1e61fda4fe71d84869cc129e2721973231ef  numpy-2.1.1-cp313-cp313t-manylinux_2_17_aarch64.manylinux2014_aarch64.whl
910b47a6d0635ec1bd53b88f86120a52bf56dcc27b51f18c7b4a2e2224c29f0f  numpy-2.1.1-cp313-cp313t-manylinux_2_17_x86_64.manylinux2014_x86_64.whl
13cc11c00000848702322af4de0147ced365c81d66053a67c2e962a485b3717c  numpy-2.1.1-cp313-cp313t-musllinux_1_1_x86_64.whl
53e27293b3a2b661c03f79aa51c3987492bd4641ef933e366e0f9f6c9bf257ec  numpy-2.1.1-cp313-cp313t-musllinux_1_2_aarch64.whl
7be6a07520b88214ea85d8ac8b7d6d8a1839b0b5cb87412ac9f49fa934eb15d5  numpy-2.1.1-pp310-pypy310_pp73-macosx_10_15_x86_64.whl
52ac2e48f5ad847cd43c4755520a2317f3380213493b9d8a4c5e37f3b87df504  numpy-2.1.1-pp310-pypy310_pp73-macosx_14_0_x86_64.whl
50a95ca3560a6058d6ea91d4629a83a897ee27c00630aed9d933dff191f170cd  numpy-2.1.1-pp310-pypy310_pp73-manylinux_2_17_x86_64.manylinux2014_x86_64.whl
99f4a9ee60eed1385a86e82288971a51e71df052ed0b2900ed30bc840c0f2e39  numpy-2.1.1-pp310-pypy310_pp73-win_amd64.whl
d0cf7d55b1051387807405b3898efafa862997b4cba8aa5dbe657be794afeafd  numpy-2.1.1.tar.gz

v2.1.0

Compare Source

v2.0.2: NumPy 2.0.2 release (Aug 26, 2024)

Compare Source

NumPy 2.0.2 Release Notes

NumPy 2.0.2 is a maintenance release that fixes bugs and regressions
discovered after the 2.0.1 release.

The Python versions supported by this release are 3.9-3.12.

Contributors

A total of 13 people contributed to this release. People with a "+" by
their names contributed a patch for the first time.

  • Bruno Oliveira +
  • Charles Harris
  • Chris Sidebottom
  • Christian Heimes +
  • Christopher Sidebottom
  • Mateusz Sokół
  • Matti Picus
  • Nathan Goldbaum
  • Pieter Eendebak
  • Raghuveer Devulapalli
  • Ralf Gommers
  • Sebastian Berg
  • Yair Chuchem +
Pull requests merged

A total of 19 pull requests were merged for this release.

  • #​27000: REL: Prepare for the NumPy 2.0.1 release [wheel build]
  • #​27001: MAINT: prepare 2.0.x for further development
  • #​27021: BUG: cfuncs.py: fix crash when sys.stderr is not available
  • #​27022: DOC: Fix migration note for alltrue and sometrue
  • #​27061: BUG: use proper input and output descriptor in array_assign_subscript...
  • #​27073: BUG: Mirror VQSORT_ENABLED logic in Quicksort
  • #​27074: BUG: Bump Highway to latest master
  • #​27077: BUG: Off by one in memory overlap check
  • #​27122: BUG: Use the new npyv_loadable_stride_ functions for ldexp and...
  • #​27126: BUG: Bump Highway to latest
  • #​27128: BUG: add missing error handling in public_dtype_api.c
  • #​27129: BUG: fix another cast setup in array_assign_subscript
  • #​27130: BUG: Fix building NumPy in FIPS mode
  • #​27131: BLD: update vendored Meson for cross-compilation patches
  • #​27146: MAINT: Scipy openblas 0.3.27.44.4
  • #​27151: BUG: Do not accidentally store dtype metadata in np.save
  • #​27195: REV: Revert undef I and document it
  • #​27213: BUG: Fix NPY_RAVEL_AXIS on backwards compatible NumPy 2 builds
  • #​27279: BUG: Fix array_equal for numeric and non-numeric scalar types
Checksums
MD5
ae4bc199b56d20305984b7465d6fbdf1  numpy-2.0.2-cp310-cp310-macosx_10_9_x86_64.whl
ecce0a682c2ccaaa14500b87ffb69f63  numpy-2.0.2-cp310-cp310-macosx_11_0_arm64.whl
a94f34bec8a62dab95ce9883a87a82a6  numpy-2.0.2-cp310-cp310-macosx_14_0_arm64.whl
a0a26dadf73264d31b7a6952b816d7c8  numpy-2.0.2-cp310-cp310-macosx_14_0_x86_64.whl
972f4366651a1a2ef00f630595104d15  numpy-2.0.2-cp310-cp310-manylinux_2_17_aarch64.manylinux2014_aarch64.whl
6cffef937fe67a3879abefd3d2c40fb8  numpy-2.0.2-cp310-cp310-manylinux_2_17_x86_64.manylinux2014_x86_64.whl
3717a5deda20f465720717a1a7a293a6  numpy-2.0.2-cp310-cp310-musllinux_1_1_x86_64.whl
e31136ecc97bb76b3cb7e86bfc9471ac  numpy-2.0.2-cp310-cp310-musllinux_1_2_aarch64.whl
9703a02ca6b63ca53f83660d089f4294  numpy-2.0.2-cp310-cp310-win32.whl
12c097ef2c7492282a5514b5c4b68784  numpy-2.0.2-cp310-cp310-win_amd64.whl
f11d11bfa3aaf371d2e7fa0160e3208b  numpy-2.0.2-cp311-cp311-macosx_10_9_x86_64.whl
86fc67666fc6e27740fde7dacb19c484  numpy-2.0.2-cp311-cp311-macosx_11_0_arm64.whl
5fd12e0dd7162ea9599c49bbb6e6730e  numpy-2.0.2-cp311-cp311-macosx_14_0_arm64.whl
a40f473db729ea10ae401ce71899120a  numpy-2.0.2-cp311-cp311-macosx_14_0_x86_64.whl
36ea96e0be954896597543d726157eda  numpy-2.0.2-cp311-cp311-manylinux_2_17_aarch64.manylinux2014_aarch64.whl
cfa726b6d5445687020fc4d4f7191e42  numpy-2.0.2-cp311-cp311-manylinux_2_17_x86_64.manylinux2014_x86_64.whl
dfb9a7b7fe218e931b0dfb885a8250d6  numpy-2.0.2-cp311-cp311-musllinux_1_1_x86_64.whl
d8bf100186e6cd1b2f27eb617ba9e581  numpy-2.0.2-cp311-cp311-musllinux_1_2_aarch64.whl
4fe937eba0fc4d28a65c0ba571c809fc  numpy-2.0.2-cp311-cp311-win32.whl
a9a0f8e1bc4d825272514896e3b17f15  numpy-2.0.2-cp311-cp311-win_amd64.whl
5ef80ec3b2db487d89c590eb301a7aa4  numpy-2.0.2-cp312-cp312-macosx_10_9_x86_64.whl
1bb398d93422bb9baf63c958ed1aa492  numpy-2.0.2-cp312-cp312-macosx_11_0_arm64.whl
cc8d990a1ad3f4d66d0143ea709ccc99  numpy-2.0.2-cp312-cp312-macosx_14_0_arm64.whl
4fee57e854bc3e9a267e865740438d53  numpy-2.0.2-cp312-cp312-macosx_14_0_x86_64.whl
c2c18eef5118607c0b023f6267ee9774  numpy-2.0.2-cp312-cp312-manylinux_2_17_aarch64.manylinux2014_aarch64.whl
2928ed26d7153a488bfb126424d86c8f  numpy-2.0.2-cp312-cp312-manylinux_2_17_x86_64.manylinux2014_x86_64.whl
e32167073981b0a1a419aaaec741773e  numpy-2.0.2-cp312-cp312-musllinux_1_1_x86_64.whl
80a10803a3122472c1bf6c4617d0d1c5  numpy-2.0.2-cp312-cp312-musllinux_1_2_aarch64.whl
39724e27a003b6ce9b1bcbf251e50b4b  numpy-2.0.2-cp312-cp312-win32.whl
8319d0b3d23285d4698cbece73b23fde  numpy-2.0.2-cp312-cp312-win_amd64.whl
da0f655880bbcb53094816b77cd493d1  numpy-2.0.2-cp39-cp39-macosx_10_9_x86_64.whl
47347c028f6ccf47d6a22724111fc96f  numpy-2.0.2-cp39-cp39-macosx_11_0_arm64.whl
26a5c8dec993258522fcef84ef0c040e  numpy-2.0.2-cp39-cp39-macosx_14_0_arm64.whl
fe447af86983ef2262e605a941bd46af  numpy-2.0.2-cp39-cp39-macosx_14_0_x86_64.whl
96477b8563e6d4e2db710f4915a4c5e0  numpy-2.0.2-cp39-cp39-manylinux_2_17_aarch64.manylinux2014_aarch64.whl
4e8255cdff60de62944aed1f4235ff68  numpy-2.0.2-cp39-cp39-manylinux_2_17_x86_64.manylinux2014_x86_64.whl
05d8465b87ca983eee044b66bc725391  numpy-2.0.2-cp39-cp39-musllinux_1_1_x86_64.whl
dcf448ef80720bae7de6724f92499754  numpy-2.0.2-cp39-cp39-musllinux_1_2_aarch64.whl
71557f67f24d39db709cc4ccb85ae5b5  numpy-2.0.2-cp39-cp39-win32.whl
f5dc31c5530037c4d1d990696b1d041c  numpy-2.0.2-cp39-cp39-win_amd64.whl
a8f814da1a4509724346c14cd838b5dc  numpy-2.0.2-pp39-pypy39_pp73-macosx_10_9_x86_64.whl
918f072481d014229dd5f0f5ba75306f  numpy-2.0.2-pp39-pypy39_pp73-macosx_14_0_x86_64.whl
fcbe2e38506fbbbeda509a89063563d3  numpy-2.0.2-pp39-pypy39_pp73-manylinux_2_17_x86_64.manylinux2014_x86_64.whl
b99eff795ca26f8a513aace76a45a356  numpy-2.0.2-pp39-pypy39_pp73-win_amd64.whl
d517a3be706295c4a4c8f75f5ee7b261  numpy-2.0.2.tar.gz
SHA256
51129a29dbe56f9ca83438b706e2e69a39892b5eda6cedcb6b0c9fdc9b0d3ece  numpy-2.0.2-cp310-cp310-macosx_10_9_x86_64.whl
f15975dfec0cf2239224d80e32c3170b1d168335eaedee69da84fbe9f1f9cd04  numpy-2.0.2-cp310-cp310-macosx_11_0_arm64.whl
8c5713284ce4e282544c68d1c3b2c7161d38c256d2eefc93c1d683cf47683e66  numpy-2.0.2-cp310-cp310-macosx_14_0_arm64.whl
becfae3ddd30736fe1889a37f1f580e245ba79a5855bff5f2a29cb3ccc22dd7b  numpy-2.0.2-cp310-cp310-macosx_14_0_x86_64.whl
2da5960c3cf0df7eafefd806d4e612c5e19358de82cb3c343631188991566ccd  numpy-2.0.2-cp310-cp310-manylinux_2_17_aarch64.manylinux2014_aarch64.whl
496f71341824ed9f3d2fd36cf3ac57ae2e0165c143b55c3a035ee219413f3318  numpy-2.0.2-cp310-cp310-manylinux_2_17_x86_64.manylinux2014_x86_64.whl
a61ec659f68ae254e4d237816e33171497e978140353c0c2038d46e63282d0c8  numpy-2.0.2-cp310-cp310-musllinux_1_1_x86_64.whl
d731a1c6116ba289c1e9ee714b08a8ff882944d4ad631fd411106a30f083c326  numpy-2.0.2-cp310-cp310-musllinux_1_2_aarch64.whl
984d96121c9f9616cd33fbd0618b7f08e0cfc9600a7ee1d6fd9b239186d19d97  numpy-2.0.2-cp310-cp310-win32.whl
c7b0be4ef08607dd04da4092faee0b86607f111d5ae68036f16cc787e250a131  numpy-2.0.2-cp310-cp310-win_amd64.whl
49ca4decb342d66018b01932139c0

Configuration

📅 Schedule: Branch creation - At any time (no schedule defined), Automerge - At any time (no schedule defined).

🚦 Automerge: Disabled by config. Please merge this manually once you are satisfied.

Rebasing: Whenever PR becomes conflicted, or you tick the rebase/retry checkbox.

🔕 Ignore: Close this PR and you won't be reminded about these updates again.


  • If you want to rebase/retry this PR, check this box

This PR was generated by Mend Renovate. View the repository job log.

@renovate renovate bot force-pushed the renovate/numpy-2.x branch 3 times, most recently from 831b6db to 62f803d Compare October 20, 2024 05:39
@OasisAkari OasisAkari marked this pull request as draft October 21, 2024 07:05
@renovate renovate bot force-pushed the renovate/numpy-2.x branch 2 times, most recently from 668a61f to 457cf98 Compare October 28, 2024 16:48
@renovate renovate bot force-pushed the renovate/numpy-2.x branch 3 times, most recently from 960ba12 to 2e943d3 Compare November 5, 2024 17:53
@renovate renovate bot force-pushed the renovate/numpy-2.x branch 2 times, most recently from 712002c to afdf712 Compare November 29, 2024 06:41
@renovate renovate bot force-pushed the renovate/numpy-2.x branch from afdf712 to 9705fc3 Compare December 8, 2024 05:51
@renovate renovate bot force-pushed the renovate/numpy-2.x branch 2 times, most recently from 9aa2769 to 3d88cff Compare December 13, 2024 06:35
@renovate renovate bot changed the title Update dependency numpy to v2 fix(deps): update dependency numpy to v2 Dec 13, 2024
@renovate renovate bot force-pushed the renovate/numpy-2.x branch from 3d88cff to 6345298 Compare December 13, 2024 08:08
Copy link
Contributor

deepsource-io bot commented Dec 13, 2024

Here's the code health analysis summary for commits 9fd92ef..4be2a91. View details on DeepSource ↗.

Analysis Summary

AnalyzerStatusSummaryLink
DeepSource Python LogoPython✅ SuccessView Check ↗

💡 If you’re a repository administrator, you can configure the quality gates from the settings.

@renovate renovate bot changed the title fix(deps): update dependency numpy to v2 Update dependency numpy to v2 Dec 13, 2024
@renovate renovate bot force-pushed the renovate/numpy-2.x branch from 6345298 to 74a0a09 Compare December 14, 2024 10:31
@renovate renovate bot changed the title Update dependency numpy to v2 fix(deps): update dependency numpy to v2 Dec 14, 2024
@DoroWolf DoroWolf force-pushed the master branch 7 times, most recently from bdfdea8 to 1835691 Compare December 18, 2024 12:21
@renovate renovate bot changed the title fix(deps): update dependency numpy to v2 Update dependency numpy to v2 Dec 19, 2024
bots/api/bot.py Fixed Show fixed Hide fixed
@renovate renovate bot force-pushed the renovate/numpy-2.x branch from f987753 to ec73537 Compare December 27, 2024 06:14
@renovate renovate bot force-pushed the renovate/numpy-2.x branch from ec73537 to 2db899e Compare December 27, 2024 15:14
@renovate renovate bot force-pushed the renovate/numpy-2.x branch from 2db899e to f627f5a Compare December 28, 2024 05:41
@renovate renovate bot force-pushed the renovate/numpy-2.x branch from f627f5a to 8606ef7 Compare January 3, 2025 11:08
@renovate renovate bot force-pushed the renovate/numpy-2.x branch from 8606ef7 to 59424d7 Compare January 4, 2025 16:11
@renovate renovate bot force-pushed the renovate/numpy-2.x branch from 59424d7 to 0ebc180 Compare January 5, 2025 15:49
@DoroWolf DoroWolf force-pushed the master branch 2 times, most recently from b956d36 to 861fb4d Compare January 12, 2025 12:31
@renovate renovate bot force-pushed the renovate/numpy-2.x branch 4 times, most recently from 9012ccf to 808c8d1 Compare January 12, 2025 16:08
@DoroWolf DoroWolf force-pushed the master branch 2 times, most recently from d603fc1 to a45df91 Compare January 12, 2025 16:18
@renovate renovate bot force-pushed the renovate/numpy-2.x branch from 808c8d1 to 15238b7 Compare January 13, 2025 13:23
@renovate renovate bot force-pushed the renovate/numpy-2.x branch 2 times, most recently from 834320b to dfdff75 Compare January 13, 2025 13:35
@renovate renovate bot force-pushed the renovate/numpy-2.x branch from dfdff75 to 4be2a91 Compare January 13, 2025 13:41
@DoroWolf DoroWolf marked this pull request as ready for review January 14, 2025 05:17
@DoroWolf DoroWolf merged commit d645dad into master Jan 14, 2025
4 checks passed
@DoroWolf DoroWolf deleted the renovate/numpy-2.x branch January 14, 2025 05:18
Sign up for free to join this conversation on GitHub. Already have an account? Sign in to comment
Labels
None yet
Projects
None yet
Development

Successfully merging this pull request may close these issues.

1 participant