Skip to content
New issue

Have a question about this project? Sign up for a free GitHub account to open an issue and contact its maintainers and the community.

By clicking “Sign up for GitHub”, you agree to our terms of service and privacy statement. We’ll occasionally send you account related emails.

Already on GitHub? Sign in to your account

Adding logistic regression & optimizing the gradient descent algorithm #832

Merged
merged 2 commits into from
Oct 26, 2024
Merged
Show file tree
Hide file tree
Changes from all commits
Commits
File filter

Filter by extension

Filter by extension

Conversations
Failed to load comments.
Loading
Jump to
Jump to file
Failed to load files.
Loading
Diff view
Diff view
1 change: 1 addition & 0 deletions DIRECTORY.md
Original file line number Diff line number Diff line change
Expand Up @@ -156,6 +156,7 @@
* [Cholesky](https://github.com/TheAlgorithms/Rust/blob/master/src/machine_learning/cholesky.rs)
* [K Means](https://github.com/TheAlgorithms/Rust/blob/master/src/machine_learning/k_means.rs)
* [Linear Regression](https://github.com/TheAlgorithms/Rust/blob/master/src/machine_learning/linear_regression.rs)
* [Logistic Regression](https://github.com/TheAlgorithms/Rust/blob/master/src/machine_learning/logistic_regression.rs)
* Loss Function
* [Average Margin Ranking Loss](https://github.com/TheAlgorithms/Rust/blob/master/src/machine_learning/loss_function/average_margin_ranking_loss.rs)
* [Hinge Loss](https://github.com/TheAlgorithms/Rust/blob/master/src/machine_learning/loss_function/hinge_loss.rs)
Expand Down
92 changes: 92 additions & 0 deletions src/machine_learning/logistic_regression.rs
Original file line number Diff line number Diff line change
@@ -0,0 +1,92 @@
use super::optimization::gradient_descent;
use std::f64::consts::E;

/// Returns the wieghts after performing Logistic regression on the input data points.
pub fn logistic_regression(
data_points: Vec<(Vec<f64>, f64)>,
iterations: usize,
learning_rate: f64,
) -> Option<Vec<f64>> {
if data_points.is_empty() {
return None;
}

let num_features = data_points[0].0.len() + 1;
let mut params = vec![0.0; num_features];

let derivative_fn = |params: &[f64]| derivative(params, &data_points);

gradient_descent(derivative_fn, &mut params, learning_rate, iterations as i32);

Some(params)
}

fn derivative(params: &[f64], data_points: &[(Vec<f64>, f64)]) -> Vec<f64> {
let num_features = params.len();
let mut gradients = vec![0.0; num_features];

for (features, y_i) in data_points {
let z = params[0]
+ params[1..]
.iter()
.zip(features)
.map(|(p, x)| p * x)
.sum::<f64>();
let prediction = 1.0 / (1.0 + E.powf(-z));

gradients[0] += prediction - y_i;
for (i, x_i) in features.iter().enumerate() {
gradients[i + 1] += (prediction - y_i) * x_i;
}
}

gradients
}

#[cfg(test)]
mod test {
use super::*;

#[test]
fn test_logistic_regression_simple() {
let data = vec![
(vec![0.0], 0.0),
(vec![1.0], 0.0),
(vec![2.0], 0.0),
(vec![3.0], 1.0),
(vec![4.0], 1.0),
(vec![5.0], 1.0),
];

let result = logistic_regression(data, 10000, 0.05);
assert!(result.is_some());

let params = result.unwrap();
assert!((params[0] + 17.65).abs() < 1.0);
assert!((params[1] - 7.13).abs() < 1.0);
}

#[test]
fn test_logistic_regression_extreme_data() {
let data = vec![
(vec![-100.0], 0.0),
(vec![-10.0], 0.0),
(vec![0.0], 0.0),
(vec![10.0], 1.0),
(vec![100.0], 1.0),
];

let result = logistic_regression(data, 10000, 0.05);
assert!(result.is_some());

let params = result.unwrap();
assert!((params[0] + 6.20).abs() < 1.0);
assert!((params[1] - 5.5).abs() < 1.0);
}

#[test]
fn test_logistic_regression_no_data() {
let result = logistic_regression(vec![], 5000, 0.1);
assert_eq!(result, None);
}
}
2 changes: 2 additions & 0 deletions src/machine_learning/mod.rs
Original file line number Diff line number Diff line change
@@ -1,12 +1,14 @@
mod cholesky;
mod k_means;
mod linear_regression;
mod logistic_regression;
mod loss_function;
mod optimization;

pub use self::cholesky::cholesky;
pub use self::k_means::k_means;
pub use self::linear_regression::linear_regression;
pub use self::logistic_regression::logistic_regression;
pub use self::loss_function::average_margin_ranking_loss;
pub use self::loss_function::hng_loss;
pub use self::loss_function::huber_loss;
Expand Down
2 changes: 1 addition & 1 deletion src/machine_learning/optimization/gradient_descent.rs
Original file line number Diff line number Diff line change
Expand Up @@ -23,7 +23,7 @@
/// A reference to the optimized parameter vector `x`.

pub fn gradient_descent(
derivative_fn: fn(&[f64]) -> Vec<f64>,
derivative_fn: impl Fn(&[f64]) -> Vec<f64>,
x: &mut Vec<f64>,
learning_rate: f64,
num_iterations: i32,
Expand Down