Code for: Content-aware segmentation of objects spanning a large size range: application to plankton images
Thelma Panaïotis
PhD student
Laboratoire d’Océanographie de Villefranche (UMR 7093)
Benchmark for three segmentation pipelines on ISIIS data:
- threshold-based pipeline: adaptive gray threshold
- T-CNN pipeline: CNN-based bbox proposal for small objects + thresholding
- T-MSER pipeline: maximally stable extremal regions
data
contains all data for segmentation benchmark:
manual
: ground truth datastacks
: manual stackssegmented
: manual particles for Ecotaxa import from manual stacksparticles
: manual segments generated from manual stacks
regular_apeep
:apeep
output for threshold-based pipelinesegmented
: segmented images fromapeep
threshold-based pipelineparticles
: particles fromapeep
threshold-based pipeline
semantic_apeep
:Apeep
output for T-CNN pipelinesegmented
: segmented images fromapeep
T-CNN pipelineparticles
: particles fromapeep
T-CNN pipeline
mser
: output for T-MSER pipelinemser_measurements.csv
: properties of T-MSER particlesmser_matches.csv
: matches of T-MSER particles with ground truth particles
raw_frames
: raw frames from avi files (generated by00.get_raw_frames.py
)matches_bbox
: particle matches (generated by03.match_particles.py
)
lib
contains needed scripts.
00.get_raw_frames.py
: extract raw frames from avi files for benchmark images01.process_manual_stacks.py
: process manual stacks by extracting and measuring particles for Ecotaxa import, and generate segmented images02.extract_manual_ecotaxa.R
: extract manual particles with taxonomy from Ecotaxa, locate them in avi files03.match_particles.py
: match manual particles with those fromapeep
threshold-based and T-CNN04.matches_stats.Rmd
: compute global precision and recall, precision and recall per size class and recall per taxonomic group for all three segmentation pipelines
A benchmark report containing computed statistics is generated: 04.matches_stats.html