Skip to content

TianyueChu/FedRep

Folders and files

NameName
Last commit message
Last commit date

Latest commit

 

History

13 Commits
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Repository files navigation

FedRep

The reputation-based aggregation for Federated Learning

Requirements

This code requires the following:

  • Python 3.6 or greater
  • PyTorch 1.6 or greater
  • Torchvision
  • Numpy 1.18.5

Data Preparation

You can change the default values of other parameters to simulate different conditions. Refer to options.py.

Options

The default values for various parameters parsed to the experiment are given in options.py. Details are given some of those parameters:

  • --dataset: Default is 'mnist'. Options: 'mnist', 'cifar'
  • --iid: Defaul is False.
  • --seed: Random Seed. Default is 1.
  • --model: Local model. Default is 'cnn'. Options: 'cnn', 'resnet18'
  • --agg:Aggregation methods. Default is 'fedavg'. Options: 'median', 'trimmed-mean', 'irls'.
  • --epochs: Rounds of training. Default is 100.
  • --frac:The fraction of parties. Default is 0.1.

References

Chu, Tianyue, Alvaro Garcia-Recuero, Costas Iordanou, Georgios Smaragdakis, and Nikolaos Laoutaris. "Securing Federated Sensitive Topic Classification against Poisoning Attacks." NDSS 2023.

About

No description, website, or topics provided.

Resources

Stars

Watchers

Forks

Releases

No releases published

Packages

No packages published

Languages