Skip to content
New issue

Have a question about this project? Sign up for a free GitHub account to open an issue and contact its maintainers and the community.

By clicking “Sign up for GitHub”, you agree to our terms of service and privacy statement. We’ll occasionally send you account related emails.

Already on GitHub? Sign in to your account

Introduce Local Server for OpenAI-Compatible APIs (Beta) #4

Open
wants to merge 2 commits into
base: dev
Choose a base branch
from
Open
Show file tree
Hide file tree
Changes from 1 commit
Commits
File filter

Filter by extension

Filter by extension

Conversations
Failed to load comments.
Loading
Jump to
Jump to file
Failed to load files.
Loading
Diff view
Diff view
40 changes: 40 additions & 0 deletions README.md
Original file line number Diff line number Diff line change
Expand Up @@ -138,6 +138,46 @@ We provide a simple example to run inference on a Huggingface LLM model. The scr
CUDA_VISIBLE_DEVICES=0 python example/interface_example.py --model_name_or_path "mistralai/Mixtral-8x7B-Instruct-v0.1" --offload_dir <your local path on SSD>
```

### OpenAI-Compatible Server

Start the OpenAI-compatible server locally
```bash
python -m moe_infinity.entrypoints.openai.api_server --model facebook/opt-125m --offload-dir ./offload_dir
```

Query the model via `/v1/components/`. (We currently only support the required fields, i.e., "model" and "prompt").
```bash
curl http://localhost:8000/v1/completions \
-H "Content-Type: application/json" \
-d '{
"model": "facebook/opt-125m",
"prompt": "Hello, my name is"
}'
```
You can also use `openai` python package to query the model.
```bash
pip install openai
python tests/test_oai_completions.py
```

Query the model via `/v1/chat/completions`. (We currently only support the required fields, i.e., "model" and "messages").
```bash
curl http://localhost:8000/v1/chat/completions \
-H "Content-Type: application/json" \
-d '{
"model": "facebook/opt-125m",
"messages": [
{"role": "system", "content": "You are a helpful assistant."},
{"role": "user", "content": "Tell me a joke"}
]
}'
```
You can also use `openai` python package to query the model.
```bash
pip install openai
python tests/test_oai_chat_completions.py
```

## Release Plan

We plan to release two functions in the following months:
Expand Down
Empty file.
287 changes: 287 additions & 0 deletions moe_infinity/entrypoints/openai/api_server.py
Original file line number Diff line number Diff line change
@@ -0,0 +1,287 @@
# Copyright 2024 TorchMoE Team

# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at

# http://www.apache.org/licenses/LICENSE-2.0

# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.

# This file includes source code adapted from vLLM
# (https://github.com/vllm-project/vllm),
# which is also licensed under the Apache License, Version 2.0.

import argparse
import asyncio
import json
import os
import time
from typing import Tuple
from queue import Queue

from transformers import AutoTokenizer, TextStreamer
# from moe_infinity import MoE
from transformers import OPTForCausalLM
import torch

import fastapi
import uvicorn
from fastapi import Request
from fastapi.responses import JSONResponse, StreamingResponse, Response

from moe_infinity.entrypoints.openai.protocol import (
ChatCompletionRequest, ChatCompletionResponse,
ChatCompletionResponseChoice, ChatCompletionResponseStreamChoice,
ChatCompletionStreamResponse, ChatMessage, DeltaMessage, ErrorResponse,
CompletionRequest, CompletionResponse,
CompletionResponseChoice,
ModelPermission, ModelCard, ModelList,
UsageInfo)
from moe_infinity.entrypoints.openai.protocol import random_uuid

TIMEOUT_KEEP_ALIVE = 5 # seconds
# logger = init_logger(__name__)
model_name = None
model = None
tokenizer = None
model_queue = None

app = fastapi.FastAPI()


class TokenStreamer(TextStreamer):
def __init__(self, tokenizer):
super().__init__(tokenizer)
self.token_cache = []
self.encoded = False

def put(self, value):
if self.encoded and value is not None:
self.token_cache.append(value)
else:
self.encoded = True

def end(self):
pass

def get_tokens(self):
return self.token_cache


def parse_prompt_format(prompt) -> Tuple[bool, list]:
# get the prompt, openai supports the following
# "a string, array of strings, array of tokens, or array of token arrays."
prompt_is_tokens = False
prompts = [prompt] # case 1: a string
if isinstance(prompt, list):
if len(prompt) == 0:
raise ValueError("please provide at least one prompt")
elif isinstance(prompt[0], str):
prompt_is_tokens = False
prompts = prompt # case 2: array of strings
elif isinstance(prompt[0], int):
prompt_is_tokens = True
prompts = [prompt] # case 3: array of tokens
elif isinstance(prompt[0], list) and isinstance(prompt[0][0], int):
prompt_is_tokens = True
prompts = prompt # case 4: array of token arrays
else:
raise ValueError(
"prompt must be a string, array of strings, array of tokens, or array of token arrays"
)
return prompt_is_tokens, prompts


def get_available_models() -> ModelList:
"""Show available models. Right now we only have one model."""
model_cards = [
ModelCard(id=model_name,
root=model_name,
permission=[ModelPermission()])
]
return ModelList(data=model_cards)


def parse_args():
parser = argparse.ArgumentParser(
description="MoE-Infinity OpenAI-Compatible RESTful API server.")
parser.add_argument("--host", type=str, default=None, help="host name")
parser.add_argument("--port", type=int, default=8000, help="port number")
parser.add_argument("--model", type=str, required=True)
parser.add_argument("--offload-dir", type=str, required=True)
parser.add_argument("--device-memory-ratio", type=float, default=0.75)

return parser.parse_args()


@app.get("/health")
async def health() -> Response:
"""Health check."""
return Response(status_code=200)


# @app.get("/v1/models")
# async def show_available_models():
# models = get_available_models()
# return JSONResponse(content=models.model_dump())


@app.post("/v1/chat/completions")
async def chat_completion(request: ChatCompletionRequest,
raw_request: Request):
model_name = request.model
created_time = int(time.monotonic())
request_id = random_uuid()

prompt = tokenizer.apply_chat_template(
conversation=request.messages,
tokenize=False,
add_generation_prompt=request.add_generation_prompt
)
print(f"prompt: {prompt}")

token_ids = tokenizer.encode(prompt, return_tensors="pt")
print(f"token_ids: {token_ids}")
num_prompt_tokens = token_ids.size(1)

streamer = TokenStreamer(tokenizer)

token = model_queue.get()
_ = model.generate(
token_ids,
streamer=streamer,
**request.to_hf_params()
)
model_queue.put(token)

outputs = torch.tensor(streamer.get_tokens())
print(f"outputs: {outputs}")
num_generated_tokens = len(outputs)

final_res = tokenizer.decode(outputs, skip_special_tokens=True)
print(f"final_res: {final_res}")

choices = []
# role = self.get_chat_request_role(request)
role = "assistant" # FIXME: hardcoded
# for output in final_res.outputs:
choice_data = ChatCompletionResponseChoice(
index=0,
message=ChatMessage(role=role, content=final_res),
finish_reason="stop",
)
choices.append(choice_data)

if request.echo:
last_msg_content = ""
if request.messages and isinstance(
request.messages, list) and request.messages[-1].get(
"content") and request.messages[-1].get(
"role") == role:
last_msg_content = request.messages[-1]["content"]

for choice in choices:
full_message = last_msg_content + choice.message.content
choice.message.content = full_message

usage = UsageInfo(
prompt_tokens=num_prompt_tokens,
completion_tokens=num_generated_tokens,
total_tokens=num_prompt_tokens + num_generated_tokens
)
response = ChatCompletionResponse(
id=request_id,
created=created_time,
model=model_name,
choices=choices,
usage=usage,
)

return response


@app.post("/v1/completions")
async def completion(request: CompletionRequest, raw_request: Request):
model_name = request.model
created_time = int(time.monotonic())
request_id = random_uuid()

prompt_is_tokens, prompts = parse_prompt_format(request.prompt)

choices = []
num_prompt_tokens = 0
num_generated_tokens = 0
for i, prompt in enumerate(prompts):
if prompt_is_tokens:
input_ids = prompt
else:
input_ids = tokenizer.encode(prompt, return_tensors="pt")

streamer = TokenStreamer(tokenizer)

token = model_queue.get()
_ = model.generate(
input_ids,
streamer=streamer,
**request.to_hf_params()
)
model_queue.put(token)

outputs = torch.tensor(streamer.get_tokens())
final_res = tokenizer.decode(outputs, skip_special_tokens=True)

output_text = final_res

choice_data = CompletionResponseChoice(
index=i,
text=output_text,
logprobs=None,
finish_reason="stop",
)
choices.append(choice_data)

num_prompt_tokens += input_ids.size(1)
num_generated_tokens += len(outputs)

usage = UsageInfo(
prompt_tokens=num_prompt_tokens,
completion_tokens=num_generated_tokens,
total_tokens=num_prompt_tokens + num_generated_tokens,
)

return CompletionResponse(
id=request_id,
created=created_time,
model=model_name,
choices=choices,
usage=usage,
)


if __name__ == "__main__":
args = parse_args()

print(f"args: {args}")

model_name = args.model
tokenizer = AutoTokenizer.from_pretrained(model_name)

config = {
"offload_path": os.path.join(args.offload_dir, model_name),
"device_memory_ratio": args.device_memory_ratio,
}
# model = MoE(args.model_name_or_path, config)
model = OPTForCausalLM.from_pretrained(model_name)
model_queue = Queue()
model_queue.put("token")

uvicorn.run(app,
host=args.host,
port=args.port,
log_level="info",
timeout_keep_alive=TIMEOUT_KEEP_ALIVE)
Loading