Skip to content

Commit

Permalink
Updated documentation to fix linebreaks (#205)
Browse files Browse the repository at this point in the history
* Updated documentation to fix linebreaks

* Add changes according to comments from the review

---------

Co-authored-by: datejada <[email protected]>
  • Loading branch information
clizbe and datejada authored Oct 31, 2023
1 parent 293cb60 commit 2650f46
Showing 1 changed file with 33 additions and 22 deletions.
55 changes: 33 additions & 22 deletions docs/src/mathematical-formulation.md
Original file line number Diff line number Diff line change
Expand Up @@ -5,23 +5,24 @@ The full mathematical formulation is also freely available in the [preprint](htt

## [Sets](@id math-sets)

NOTE: Asset types are mutually exclusive.
Name|Description|Elements
---|---|---:
---|---|---
$\mathcal{A}$ | Energy assets | $a \in \mathcal{A}$
$\mathcal{A}_c$ | Consumer energy assets | $\mathcal{A}_c \subseteq \mathcal{A}$
$\mathcal{A}_p$ | Producer energy assets | $\mathcal{A}_p \subseteq \mathcal{A}$
$\mathcal{A}_s$ | Storage energy assets | $\mathcal{A}_s \subseteq \mathcal{A}$
$\mathcal{A}_h$ | Hub energy assets (e.g., transshipment) | $\mathcal{A}_h \subseteq \mathcal{A}$
$\mathcal{A}_{cv}$ | Conversion energy assets | $\mathcal{A}_{cv}\subseteq \mathcal{A}$
$\mathcal{A}_i$ | Energy assets with investment method | $\mathcal{A}_i \subseteq \mathcal{A}$
$\mathcal{A}_c$ | Consumer energy assets | $\mathcal{A}_c \subseteq \mathcal{A}$
$\mathcal{A}_p$ | Producer energy assets | $\mathcal{A}_p \subseteq \mathcal{A}$
$\mathcal{A}_s$ | Storage energy assets | $\mathcal{A}_s \subseteq \mathcal{A}$
$\mathcal{A}_h$ | Hub energy assets (e.g., transshipment) | $\mathcal{A}_h \subseteq \mathcal{A}$
$\mathcal{A}_{cv}$ | Conversion energy assets | $\mathcal{A}_{cv} \subseteq \mathcal{A}$
$\mathcal{A}_i$ | Energy assets with investment method | $\mathcal{A}_i \subseteq \mathcal{A}$
$\mathcal{F}$ | Flow connections between two assets | $f \in \mathcal{F}$
$\mathcal{F}_t$ | Transport flow between two assets | $\mathcal{F}_t \subseteq \mathcal{F}$
$\mathcal{F}_i$ | Transport flow with investment method | $\mathcal{F}_i \subseteq \mathcal{F}_t$
$\mathcal{F}_{in}(a)$ | Set of flows going into asset $a$ | $\mathcal{F}_{in}(a) \subseteq \mathcal{F}$
$\mathcal{F}_t$ | Transport flow between two assets | $\mathcal{F}_t \subseteq \mathcal{F}$
$\mathcal{F}_i$ | Transport flow with investment method | $\mathcal{F}_i \subseteq \mathcal{F}_t$
$\mathcal{F}_{in}(a)$ | Set of flows going into asset $a$ | $\mathcal{F}_{in}(a) \subseteq \mathcal{F}$
$\mathcal{F}_{out}(a)$ | Set of flows going out of asset $a$ | $\mathcal{F}_{out}(a) \subseteq \mathcal{F}$
$\mathcal{RP}$ | Representative periods | $rp \in \mathcal{RP}$
$\mathcal{K}$ | Time steps within the $rp$ | $k \in \mathcal{K}$
$\mathcal{K}$ | Time steps within the $rp$ | $k \in \mathcal{K}$

NOTE: Asset types are mutually exclusive.

## [Parameters](@id math-parameters)

Expand Down Expand Up @@ -81,31 +82,35 @@ flows\_variable\_cost &= \sum_{f \in \mathcal{F}} \sum_{rp \in \mathcal{RP}} \su

```math
\begin{aligned}
\sum_{f \in \mathcal{F}_{in}(a)} v^{flow}_{f,rp,k} - \sum_{f \in \mathcal{F}_{out}(a)} v^{flow}_{f,rp,k} \left\{\begin{array}{l} = \\ \geqslant \\ \leqslant \end{array}\right\} p^{profile}_{a,rp,k} \cdot p^{peak\_demand}_{a} \quad \forall a \in \mathcal{A}_c, \forall rp \in \mathcal{RP},\forall k \in \mathcal{K}
\sum_{f \in \mathcal{F}_{in}(a)} v^{flow}_{f,rp,k} - \sum_{f \in \mathcal{F}_{out}(a)} v^{flow}_{f,rp,k} \left\{\begin{array}{l} = \\ \geqslant \\ \leqslant \end{array}\right\} p^{profile}_{a,rp,k} \cdot p^{peak\_demand}_{a} \quad
\\ \\ \forall a \in \mathcal{A}_c, \forall rp \in \mathcal{RP},\forall k \in \mathcal{K}
\end{aligned}
```

#### Constraints for Storage Energy Assets $\mathcal{A}_s$

```math
\begin{aligned}
s_{a,rp,k}^{level} = s_{a,rp,k-1}^{level} + p_{a,rp,k}^{inflow} + \cdot \sum_{f \in \mathcal{F}_{in}(a)} p^{eff}_f \cdot v^{flow}_{f,rp,k} - \sum_{f \in \mathcal{F}_{out}(a)} \frac{1}{p^{eff}_f} \cdot v^{flow}_{f,rp,k} \quad \forall a \in \mathcal{A}_s, \forall rp \in \mathcal{RP},\forall k \in \mathcal{K}
s_{a,rp,k}^{level} = s_{a,rp,k-1}^{level} + p_{a,rp,k}^{inflow} + \cdot \sum_{f \in \mathcal{F}_{in}(a)} p^{eff}_f \cdot v^{flow}_{f,rp,k} - \sum_{f \in \mathcal{F}_{out}(a)} \frac{1}{p^{eff}_f} \cdot v^{flow}_{f,rp,k} \quad
\\ \\ \forall a \in \mathcal{A}_s, \forall rp \in \mathcal{RP},\forall k \in \mathcal{K}
\end{aligned}
```

#### Constraints for Hub Energy Assets $\mathcal{A}_h$

```math
\begin{aligned}
\sum_{f \in \mathcal{F}_{in}(a)} v^{flow}_{f,rp,k} = \sum_{f \in \mathcal{F}_{out}(a)} v^{flow}_{f,rp,k} \quad \forall a \in \mathcal{A}_h, \forall rp \in \mathcal{RP},\forall k \in \mathcal{K}
\sum_{f \in \mathcal{F}_{in}(a)} v^{flow}_{f,rp,k} = \sum_{f \in \mathcal{F}_{out}(a)} v^{flow}_{f,rp,k} \quad
\\ \\ \forall a \in \mathcal{A}_h, \forall rp \in \mathcal{RP},\forall k \in \mathcal{K}
\end{aligned}
```

#### Constraints for Conversion Energy Assets $\mathcal{A}_{cv}$

```math
\begin{aligned}
\sum_{f \in \mathcal{F}_{in}(a)} p^{eff}_f \cdot {v^{flow}_{f,rp,k}} = \sum_{f \in \mathcal{F}_{out}(a)} \frac{v^{flow}_{f,rp,k}}{p^{eff}_f} \quad \forall a \in \mathcal{A}_{cv}, \forall rp \in \mathcal{RP},\forall k \in \mathcal{K}
\sum_{f \in \mathcal{F}_{in}(a)} p^{eff}_f \cdot {v^{flow}_{f,rp,k}} = \sum_{f \in \mathcal{F}_{out}(a)} \frac{v^{flow}_{f,rp,k}}{p^{eff}_f} \quad
\\ \\ \forall a \in \mathcal{A}_{cv}, \forall rp \in \mathcal{RP},\forall k \in \mathcal{K}
\end{aligned}
```

Expand All @@ -115,23 +120,26 @@ s_{a,rp,k}^{level} = s_{a,rp,k-1}^{level} + p_{a,rp,k}^{inflow} + \cdot \sum_{f

```math
\begin{aligned}
\sum_{f \in \mathcal{F}_{out}(a)} v^{flow}_{f,rp,k} \leq p^{profile}_{a,rp,k} \cdot \left(p^{init\_capacity}_{a} + p^{unit\_capacity}_a \cdot v^{investment}_a \right) \quad \forall a \in \mathcal{A}_{cv} \cup \mathcal{A_{s}} \cup \mathcal{A_{p}}, \forall rp \in \mathcal{RP},\forall k \in \mathcal{K}
\sum_{f \in \mathcal{F}_{out}(a)} v^{flow}_{f,rp,k} \leq p^{profile}_{a,rp,k} \cdot \left(p^{init\_capacity}_{a} + p^{unit\_capacity}_a \cdot v^{investment}_a \right) \quad
\\ \\ \forall a \in \mathcal{A}_{cv} \cup \mathcal{A_{s}} \cup \mathcal{A_{p}}, \forall rp \in \mathcal{RP},\forall k \in \mathcal{K}
\end{aligned}
```

#### Contraint for the Overall Input Flows from an Asset

```math
\begin{aligned}
\sum_{f \in \mathcal{F}_{in}(a)} v^{flow}_{f,rp,k} \leq p^{profile}_{a,rp,k} \cdot \left(p^{init\_capacity}_{a} + p^{unit\_capacity}_a \cdot v^{investment}_a \right) \quad \forall a \in \mathcal{A_{s}}, \forall rp \in \mathcal{RP},\forall k \in \mathcal{K}
\sum_{f \in \mathcal{F}_{in}(a)} v^{flow}_{f,rp,k} \leq p^{profile}_{a,rp,k} \cdot \left(p^{init\_capacity}_{a} + p^{unit\_capacity}_a \cdot v^{investment}_a \right) \quad
\\ \\ \forall a \in \mathcal{A_{s}}, \forall rp \in \mathcal{RP},\forall k \in \mathcal{K}
\end{aligned}
```

#### Upper Bound Constraint for Associated with Asset

```math
\begin{aligned}
v^{flow}_{f,rp,k} \leq p^{profile}_{a,rp,k} \cdot \left(p^{init\_capacity}_{a} + p^{unit\_capacity}_a \cdot v^{investment}_a \right) \quad \forall a \notin \mathcal{A}_h \cup \mathcal{A}_c, \forall f \in \mathcal{F}_{out}(a) \& \notin \mathcal{F}_t, \forall rp \in \mathcal{RP},\forall k \in \mathcal{K}
v^{flow}_{f,rp,k} \leq p^{profile}_{a,rp,k} \cdot \left(p^{init\_capacity}_{a} + p^{unit\_capacity}_a \cdot v^{investment}_a \right) \quad \\ \\ \forall a \notin \mathcal{A}_h \cup \mathcal{A}_c,
\forall f \in \mathcal{F}_{out}(a) \& \notin \mathcal{F}_t, \forall rp \in \mathcal{RP},\forall k \in \mathcal{K}
\end{aligned}
```

Expand All @@ -147,15 +155,17 @@ v^{flow}_{f,rp,k} \geq 0 \quad \forall f \notin \mathcal{F}_t, \forall rp \in \m

```math
\begin{aligned}
v^{flow}_{f,rp,k} \leq p^{profile}_{f,rp,k} \cdot \left(p^{init\_capacity}_{f} + p^{export\_capacity}_f \cdot v^{investment}_f \right) \quad \forall f \in \mathcal{F}_t, \forall rp \in \mathcal{RP},\forall k \in \mathcal{K}
v^{flow}_{f,rp,k} \leq p^{profile}_{f,rp,k} \cdot \left(p^{init\_capacity}_{f} + p^{export\_capacity}_f \cdot v^{investment}_f \right) \quad
\\ \\ \forall f \in \mathcal{F}_t, \forall rp \in \mathcal{RP},\forall k \in \mathcal{K}
\end{aligned}
```

#### Lower Bound Constraint for Transport Flows

```math
\begin{aligned}
v^{flow}_{f,rp,k} \geq p^{profile}_{f,rp,k} \cdot \left(p^{init\_capacity}_{f} + p^{import\_capacity}_f \cdot v^{investment}_f \right) \quad \forall f \in \mathcal{F}_t, \forall rp \in \mathcal{RP},\forall k \in \mathcal{K}
v^{flow}_{f,rp,k} \geq p^{profile}_{f,rp,k} \cdot \left(p^{init\_capacity}_{f} + p^{import\_capacity}_f \cdot v^{investment}_f \right) \quad
\\ \\ \forall f \in \mathcal{F}_t, \forall rp \in \mathcal{RP},\forall k \in \mathcal{K}
\end{aligned}
```

Expand All @@ -164,5 +174,6 @@ v^{flow}_{f,rp,k} \geq p^{profile}_{f,rp,k} \cdot \left(p^{init\_capacity}_{f} +
#### Upper and Lower Bound Constraints for Storage Level

```math
0 \leq s_{a,rp,k}^{level} \leq p^{init\_storage\_capacity}_{a} + p^{ene\_to\_pow\_ratio}_a \cdot p^{unit\_capacity}_a \cdot v^{investment}_a \quad \forall a \in \mathcal{A}_s, \forall rp \in \mathcal{RP},\forall k \in \mathcal{K}
0 \leq s_{a,rp,k}^{level} \leq p^{init\_storage\_capacity}_{a} + p^{ene\_to\_pow\_ratio}_a \cdot p^{unit\_capacity}_a \cdot v^{investment}_a \quad
\\ \\ \forall a \in \mathcal{A}_s, \forall rp \in \mathcal{RP},\forall k \in \mathcal{K}
```

0 comments on commit 2650f46

Please sign in to comment.