Skip to content

Commit

Permalink
[WIP] Implement storage level with asset intervals
Browse files Browse the repository at this point in the history
  • Loading branch information
abelsiqueira committed Oct 31, 2023
1 parent 435a39e commit ba7326c
Show file tree
Hide file tree
Showing 2 changed files with 39 additions and 26 deletions.
38 changes: 22 additions & 16 deletions src/io.jl
Original file line number Diff line number Diff line change
Expand Up @@ -20,27 +20,33 @@ function create_parameters_and_sets_from_file(input_folder::AbstractString)
flows_intervals_df = read_csv_with_schema(fillpath("flows-time-intervals.csv"), TimeIntervalsData)

# Sets and subsets that depend on input data
assets = assets_data_df[assets_data_df.active.==true, :].name #assets in the energy system that are active
assets_producer = assets_data_df[assets_data_df.type.=="producer", :].name #producer assets in the energy system
assets_consumer = assets_data_df[assets_data_df.type.=="consumer", :].name #consumer assets in the energy system
assets_storage = assets_data_df[assets_data_df.type.=="storage", :].name #storage assets in the energy system
assets_hub = assets_data_df[assets_data_df.type.=="hub", :].name #hub assets in the energy system
assets_conversion = assets_data_df[assets_data_df.type.=="conversion", :].name #conversion assets in the energy system
assets_investment = assets_data_df[assets_data_df.investable.==true, :].name #assets with investment method in the energy system
rep_periods = unique(assets_profiles_df.rep_period_id) #representative periods
time_steps = Dict(row.id => 1:row.num_time_steps for row in eachrow(rep_period_df)) #time steps in the RP (e.g., hours), that are dependent on RP
flows = [(row.from_asset, row.to_asset) for row in eachrow(flows_data_df)]
# time_intervals_per_asset = compute_time_intervals(assets_intervals_df, assets, time_steps)
time_intervals_per_flow = compute_time_intervals(flows_intervals_df, flows, time_steps)
assets = assets_data_df[assets_data_df.active.==true, :].name #assets in the energy system that are active
assets_producer = assets_data_df[assets_data_df.type.=="producer", :].name #producer assets in the energy system
assets_consumer = assets_data_df[assets_data_df.type.=="consumer", :].name #consumer assets in the energy system
assets_storage = assets_data_df[assets_data_df.type.=="storage", :].name #storage assets in the energy system
assets_hub = assets_data_df[assets_data_df.type.=="hub", :].name #hub assets in the energy system
assets_conversion = assets_data_df[assets_data_df.type.=="conversion", :].name #conversion assets in the energy system
assets_investment = assets_data_df[assets_data_df.investable.==true, :].name #assets with investment method in the energy system
rep_periods = unique(assets_profiles_df.rep_period_id) #representative periods
time_steps = Dict(row.id => 1:row.num_time_steps for row in eachrow(rep_period_df)) #time steps in the RP (e.g., hours), that are dependent on RP
flows = [(row.from_asset, row.to_asset) for row in eachrow(flows_data_df)]
time_intervals_per_asset = compute_time_intervals(assets_intervals_df, assets, time_steps)
time_intervals_per_flow = compute_time_intervals(flows_intervals_df, flows, time_steps)

# From balance equations:
# Every asset a ∈ A and every rp ∈ RP will define a collection of flows, and therefore the time steps
# can be defined a priori.
constraints_time_periods = Dict(
(a, rp) => begin
compute_rp_periods([
time_intervals_per_flow[(f, rp)] for f in flows if f[1] == a || f[2] == a
])
compute_rp_periods(
[
[
time_intervals_per_flow[(f, rp)] for
f in flows if f[1] == a || f[2] == a
]
[time_intervals_per_asset[(a, rp)]]
],
)
end for a in assets, rp in rep_periods
)

Expand Down Expand Up @@ -146,7 +152,7 @@ function create_parameters_and_sets_from_file(input_folder::AbstractString)
flows = flows,
rep_periods = rep_periods,
time_steps = time_steps,
# time_intervals_per_asset = time_intervals_per_asset,
time_intervals_per_asset = time_intervals_per_asset,
time_intervals_per_flow = time_intervals_per_flow,
constraints_time_periods = constraints_time_periods,
)
Expand Down
27 changes: 17 additions & 10 deletions src/model.jl
Original file line number Diff line number Diff line change
Expand Up @@ -19,10 +19,10 @@ function create_model(graph, params, sets; verbose = false, write_lp_file = fals
Fi = [f for f F if params.flows_investable[f]]
Ft = [f for f F if params.flows_is_transport[f]]
# K_rp = sets.time_steps
# K_A = sets.time_intervals_per_asset
K_A = sets.time_intervals_per_asset
K_F = sets.time_intervals_per_flow
P = sets.constraints_time_periods
RP = sets.rep_periods
P = sets.constraints_time_periods
RP = sets.rep_periods

# Model
model = Model(HiGHS.Optimizer)
Expand All @@ -32,7 +32,7 @@ function create_model(graph, params, sets; verbose = false, write_lp_file = fals
@variable(model, flow[f F, rp RP, K_F[(f, rp)]]) #flow from asset a to asset aa [MW]
@variable(model, 0 assets_investment[Ai], Int) #number of installed asset units [N]
@variable(model, 0 flows_investment[Fi], Int)
@variable(model, 0 storage_level[a As, rp RP, P[(a, rp)]])
@variable(model, 0 storage_level[a As, rp RP, K_A[(a, rp)]])

# TODO: Fix storage_level[As, RP, 0] = 0

Expand Down Expand Up @@ -95,12 +95,17 @@ function create_model(graph, params, sets; verbose = false, write_lp_file = fals

# - storage balance equation
# TODO: Add p^{inflow}
# TODO: Fix the initial storage_level
@constraint(
model,
c_storage_balance[a As, rp RP, (k, T) enumerate(P[(a, rp)])],
storage_level[a, rp, T] ==
(k 2 ? storage_level[a, rp, P[(a, rp)][k-1]] : 0.0) + sum(
c_storage_balance[a As, rp RP, T P[(a, rp)]],
sum(
ratio([T[end]], I, rp) * storage_level[a, rp, I] for
I sets.time_intervals_per_asset[(a, rp)]
) ==
sum(
ratio([T[1] - 1], I, rp) * storage_level[a, rp, I] for
I sets.time_intervals_per_asset[(a, rp)]
) + sum(
ratio(T, I, rp) * flow[f, rp, I] * params.flows_efficiency[f] for
f F, I sets.time_intervals_per_flow[(f, rp)] if f[2] == a
) - sum(
Expand Down Expand Up @@ -230,8 +235,10 @@ function create_model(graph, params, sets; verbose = false, write_lp_file = fals
@constraint(
model,
upper_bound_for_storage_level[a As, rp RP, T P[(a, rp)]],
storage_level[a, rp, T]
params.initial_storage_capacity[a] + (a Ai ? energy_limit[a] : 0.0)
sum(
ratio(T, I, rp) * storage_level[a, rp, I] for
I sets.time_intervals_per_asset[(a, rp)]
) params.initial_storage_capacity[a] + (a Ai ? energy_limit[a] : 0.0)
)

if write_lp_file
Expand Down

0 comments on commit ba7326c

Please sign in to comment.