Skip to content

TuringLang/TuringBenchmarking.jl

Folders and files

NameName
Last commit message
Last commit date

Latest commit

 

History

88 Commits
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Repository files navigation

TuringBenchmarking.jl

Stable Dev Build Status

A quick and dirty way to compare different automatic-differentiation backends in Turing.jl.

A typical workflow will look something like

using BenchmarkTools
using Turing
using TuringBenchmarking

# Define your model.
@model function your_model(...)
    # ...
end

# Create and run the benchmarking suite for Turing.jl.
turing_suite = make_turing_suite(model; kwargs...)
run(turing_suite)

Example output:

# Running `examples/item-response-model.jl` on my laptop.
2-element BenchmarkTools.BenchmarkGroup:
  tags: []
  "linked" => 2-element BenchmarkTools.BenchmarkGroup:
          tags: []
          "evaluation" => Trial(1.132 ms)
          "Turing.Essential.ReverseDiffAD{true}()" => Trial(1.598 ms)
          "Turing.Essential.ForwardDiffAD{40, true}()" => Trial(184.703 ms)
  "not_linked" => 2-element BenchmarkTools.BenchmarkGroup:
          tags: []
          "evaluation" => Trial(1.131 ms)
          "Turing.Essential.ReverseDiffAD{true}()" => Trial(1.596 ms)
          "Turing.Essential.ForwardDiffAD{40, true}()" => Trial(182.864 ms)

"linked"/"not_linked" here refers to whether or not we're working in unconstrained space.

And if you want to compare the result to Stan:

using BridgeStan, JSON

# Tell `TuringBenchmarking` how to convert `model` into Stan data & model.
function TuringBenchmaring.extract_stan_data(model::Turing.Model{typeof(your_model)})
    # In the case where the Turing.jl and Stan models are identical in what they expect we can just do:
    return JSON.json(Dict(zip(string.(keys(model.args)), values(model.args))))
end

TuringBenchmarking.stan_model_string(model::Turing.Model{typeof(your_model)}) = """
[HERE GOES YOUR STAN MODEL DEFINITION]
"""

# Create and run the benchmarking suite for Stan.
stan_suite = make_stan_suite(model; kwargs...)
run(stan_suite)

Example output:

# Running `examples/item-response-model.jl` on my laptop.
2-element BenchmarkTools.BenchmarkGroup:
  tags: []
  "evaluation" => Trial(1.102 ms)
  "gradient" => Trial(1.256 ms)

Note that the benchmarks for Stan are only in unconstrained space.