Skip to content

Group Fairness by Probabilistic Modeling with Latent Fair Decisions

Notifications You must be signed in to change notification settings

UCLA-StarAI/FairPC.jl

Folders and files

NameName
Last commit message
Last commit date

Latest commit

 

History

14 Commits
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Repository files navigation

Learn Fair PC

This repo contains the code and experiments from the paper "Group Fairness by Probabilistic Modeling with Latent Fair Decisions", published in AAAI 2021.

Files

  baselines/    Python scripts to reproduce `Reweight`, `Reduction` and `FairLR`.
  bin/          Runnable julia scripts (see below).
  circuits/     Learned circuits in experiments.
  data/         Datasets used in the experiments.
  scripts/      Helper files to generate experiments scripts.
  src/          The source code for the algorithm.
  Project.toml  This file specifies required julia environment.
  README.md     This is this file.

Installation

  1. Julia version 1.7

  2. Run commands with flag --project will automatically use the packages specified in Project.toml. See belows scripts for examples.

Experiments

Usage

  • Run bin/learn.jl with --help argument to see the usage message. Most of the options have default values. The following are some arguments need to be manully set:
positional arguments:
  dataset               dataset name, in {compas, adult, german, synthetic}
optional arguments:
  --sensitive_variable  sensitive variable of current data set, e.g.,{Ethnic_Code_Text_, sex, S}
  --fold                fold id for k-fold cross validation, in [1:10]
  --struct_type         indicate structure constrains of probability distributions, in {FairPC, TwoNB, NlatPC, LatNB}
  --num_X               number of non sensitive features in synthetic data set setting, in [10:30]
  • Some sample scripts
$  julia --project bin/learn.jl compas --exp-id 1  --dir "exp/compas/1" --struct_type "FairPC"  --sensitive_variable "Ethnic_Code_Text_"  --fold 1 
$  julia --prroject bin/learn.jl synthetic --exp-id 2  --dir "exp/synthetic/2" --struct_type "FairPC"  --num_X 10  --sensitive_variable "S"  --fold 1 
  • To generate multiple scripts and run batches of experiments in parallel, run the following for real-world dataset and synthetic dataset respectively:
$ julia --project bin/gen_exp.jl scripts/json/realworld-fair.json 
$ julia --project bin/gen_exp.jl scripts/json/synthetic-fair.json

you can also change dir in file *.json to the output directory you want.

Baselines

  • For TowNB, LatNB, and NlatPC, see above.
  • For Reduction, Reweight, and FairLR methods, run fair_reduction.py, reweight.py or fair_lr.py respectively(the first two in python3 and the last in python2) in directory .\baselines with the following arguments:
# usage is the same as above
positional arguments:
  dataset
optional arguments:
  --fold
  --num_X
  • Some sample scripts
$ python3 reweight.py compas --fold 1
$ python2 fair_lr.py synthetic --fold 1 --num_X 30
$ python3 fair_reduction.py german --fold 2
  • To generate batches scripts, run:
$ julia bin/gen_exp.jl scripts/json/baselines.json --set_id 0 --cmd python3 -b fair_reduction.py
$ julia bin/gen_exp.jl scripts/json/baselines.json --set_id 0 --cmd python3 -b reweight.py
$ julia bin/gen_exp.jl scripts/json/baselines.json --set_id 0 --cmd python -b fair_lr.py

About

Group Fairness by Probabilistic Modeling with Latent Fair Decisions

Resources

Stars

Watchers

Forks

Releases

No releases published

Packages

No packages published

Contributors 3

  •  
  •  
  •