Skip to content
New issue

Have a question about this project? Sign up for a free GitHub account to open an issue and contact its maintainers and the community.

By clicking “Sign up for GitHub”, you agree to our terms of service and privacy statement. We’ll occasionally send you account related emails.

Already on GitHub? Sign in to your account

Tryout Python 3.12 #392

Merged
merged 6 commits into from
May 14, 2024
Merged
Show file tree
Hide file tree
Changes from all commits
Commits
File filter

Filter by extension

Filter by extension


Conversations
Failed to load comments.
Loading
Jump to
Jump to file
Failed to load files.
Loading
Diff view
Diff view
Binary file modified data/covid19_DTM/interim/sciensano/vacc_incidence_national.pkl
Binary file not shown.
Binary file modified data/covid19_DTM/interim/sciensano/vacc_incidence_prov.pkl
Binary file not shown.
2 changes: 1 addition & 1 deletion environment.yml
Original file line number Diff line number Diff line change
Expand Up @@ -3,7 +3,7 @@ channels:
- conda-forge
- defaults
dependencies:
- python=3.11.4
- python=3.12
- pandas
- numpy
- scipy
Expand Down
Original file line number Diff line number Diff line change
Expand Up @@ -35,10 +35,6 @@
from pySODM.optimization.mcmc import perturbate_theta, run_EnsembleSampler, emcee_sampler_to_dictionary
from pySODM.optimization.objective_functions import log_posterior_probability, log_prior_uniform, ll_negative_binomial, ll_poisson

# Suppress warnings
import warnings
warnings.filterwarnings("ignore")

#############################
## Handle script arguments ##
#############################
Expand Down Expand Up @@ -192,7 +188,7 @@
pars = pars1 + pars2 + pars3 + pars4
bounds = bounds1 + bounds2 + bounds3 + bounds4
# Define labels
labels = ['$\Omega$', '$\Psi$', 'k', '$K_{inf, abc}$', '$K_{inf, \\delta}$', '$A$', '$f_h$']
labels = [r'$\Omega$', r'$\Psi$', r'k', r'$K_{inf, abc}$', r'$K_{inf, \delta}$', r'$A$', r'$f_h$']
# Setup objective function without priors and with negative weights
objective_function = log_posterior_probability(model,pars,bounds,data,states,log_likelihood_fnc,log_likelihood_fnc_args,labels=labels)

Expand Down
Original file line number Diff line number Diff line change
Expand Up @@ -32,8 +32,6 @@
from pySODM.optimization.mcmc import perturbate_theta, run_EnsembleSampler, emcee_sampler_to_dictionary
from pySODM.optimization.objective_functions import log_posterior_probability, log_prior_uniform, ll_poisson, ll_negative_binomial

import warnings
warnings.filterwarnings("ignore")

####################################
## Public or private spatial data ##
Expand Down Expand Up @@ -237,7 +235,7 @@
# Join them together
pars = pars1 + pars2 + pars3 + pars4
bounds = bounds1 + bounds2 + bounds3 + bounds4
labels = ['$\\Omega$', '$\Psi$', '$k$', '$\Psi_{F}$', '$\Psi_{W}$', '$\Psi_{B}$', '$K_{inf, abc}$', '$K_{inf,\\delta}$', '$A$', '$f_h$']
labels = [r'$\Omega$', r'$\Psi$', '$k$', r'$\Psi_{F}$', r'$\Psi_{W}$', r'$\Psi_{B}$', r'$K_{inf, abc}$', r'$K_{inf,\delta}$', '$A$', '$f_h$']
# Setup objective function with uniform priors
objective_function = log_posterior_probability(model,pars,bounds,data,states,log_likelihood_fnc,log_likelihood_fnc_args,labels=labels, aggregation_function=aggregate_Brussels_Brabant_DataArray)

Expand Down
10 changes: 2 additions & 8 deletions setup.py
Original file line number Diff line number Diff line change
Expand Up @@ -13,15 +13,9 @@
'numpy',
'scipy',
'pandas',
'xlrd',
'openpyxl',
'zarr',
'emcee',
'xarray',
'rbfopt',
'openpyxl',
'numba',
'SAlib',
'h5py'
'pySODM',
],
extras_require={
"develop": ["pytest",
Expand Down
8 changes: 4 additions & 4 deletions src/covid19_DTM/data/model_parameters.py
Original file line number Diff line number Diff line change
Expand Up @@ -464,13 +464,13 @@ def get_COVID19_SEIQRD_VOC_parameters(VOCs=['WT', 'abc', 'delta', 'omicron'], pa
index=['WT', 'abc', 'delta', 'omicron'], columns=pd.MultiIndex.from_tuples(columns))

# Define logistic growth properties
VOC_parameters.loc['WT']['logistic_growth'] = [
VOC_parameters.loc['WT', 'logistic_growth'] = [
datetime(2019, 1, 1), datetime(2019, 2, 1), 0.20]
VOC_parameters.loc['abc']['logistic_growth'] = [
VOC_parameters.loc['abc', 'logistic_growth'] = [
datetime(2020, 12, 1), datetime(2021, 2, 14), 0.07]
VOC_parameters.loc['delta']['logistic_growth'] = [
VOC_parameters.loc['delta', 'logistic_growth'] = [
datetime(2021, 5, 1), datetime(2021, 6, 25), 0.11]
VOC_parameters.loc['omicron']['logistic_growth'] = [
VOC_parameters.loc['omicron', 'logistic_growth'] = [
datetime(2021, 11, 26), datetime(2021, 12, 24), 0.19]

# Define variant properties
Expand Down
Loading