Skip to content

Commit

Permalink
Update README.md
Browse files Browse the repository at this point in the history
  • Loading branch information
jdtardos authored Jul 19, 2020
1 parent bd7d14b commit b5352f0
Showing 1 changed file with 21 additions and 26 deletions.
47 changes: 21 additions & 26 deletions README.md
Original file line number Diff line number Diff line change
Expand Up @@ -3,46 +3,42 @@
### V0.2: Beta version, 21 Jul 2020
**Authors:** [Carlos Campos], [Richard Elvira], [Juan J. Gómez], [Juan D. Tardos](http://webdiis.unizar.es/~jdtardos/), [J. M. M. Montiel](http://webdiis.unizar.es/~josemari/)

ORB-SLAM3 is a real time SLAM library for **Monocular**, **Stereo** and **RGB-D** sensors with capabilities to handle **Inertial** sensors and **Multiple-Maps**. The camera abstraction allow to work with different kind of camera, the code include the implementation of **Pinhole** and **Fisheye** sensors. This software is able to combine the diffenrent configurations to build a 3D sparse map where the main sensor is located.
ORB-SLAM3 is the first real time SLAM library able to perform **Visual, Visual-Inertial and Multi-Map SLAM** with **monocular, stereo and RGB-D** cameras, using **pin-hole and fisheye** lens models. In all sensor configurations, ORB-SLAM3 is as robust as the best systems available in the literature, and significantly more accurate.

We provide examples to run the SLAM system in the [EuRoC dataset](http://projects.asl.ethz.ch/datasets/doku.php?id=kmavvisualinertialdatasets) as pinhole stereo or monocular with or without inertial measures, in the [TUM-VI dataset](https://vision.in.tum.de/data/datasets/visual-inertial-dataset) as fisheye stereo or monocular with or without inertial.
We provide examples to run ORB-SLAM3 system in the [EuRoC dataset](http://projects.asl.ethz.ch/datasets/doku.php?id=kmavvisualinertialdatasets) using stereo or monocular with or without IMU, and in the [TUM-VI dataset](https://vision.in.tum.de/data/datasets/visual-inertial-dataset) using fisheye stereo or monocular with or without IMU.


This code is the next version of ORB-SLAM2 developed by [Raul Mur-Artal](http://webdiis.unizar.es/~raulmur/), [Juan D. Tardos](http://webdiis.unizar.es/~jdtardos/), [J. M. M. Montiel](http://webdiis.unizar.es/~josemari/) and [Dorian Galvez-Lopez](http://doriangalvez.com/) ([DBoW2](https://github.com/dorian3d/DBoW2))
This software is based on [ORB-SLAM2](https://github.com/raulmur/ORB_SLAM2) developed by [Raul Mur-Artal](http://webdiis.unizar.es/~raulmur/), [Juan D. Tardos](http://webdiis.unizar.es/~jdtardos/), [J. M. M. Montiel](http://webdiis.unizar.es/~josemari/) and [Dorian Galvez-Lopez](http://doriangalvez.com/) ([DBoW2](https://github.com/dorian3d/DBoW2)).


### Related Publications:

[ORB-SLAM3] Carlos Campos*, Richard Elvira*, Juan J. Gómez, J. M. M. Montiel and Juan D. Tardós. **ORB-SLAM3**. *Submited to IEEE Transactions on Robotics*. **[PDF](https://arxiv.org/pdf)**.
*Same contribution to the article.
Carlos Campos, Richard Elvira, Juan J. Gómez, J. M. M. Montiel and Juan D. Tardós, **ORB-SLAM3: An Accurate Open-Source Library for Visual, Visual-Inertial and Multi-Map SLAM**, Under review. **[PDF](https://arxiv.org/pdf)**.

[IMU-Initialization] Carlos Campos, J. M. M. Montiel and Juan D. Tardós, **Inertial-Only Optimization for Visual-Inertial Initialization**. *ICRA 2020*. **[PDF](https://arxiv.org/pdf/2003.05766.pdf)**

[Inertial-Initialization] Carlos Campos, J. M. M. Montiel and Juan D. Tardós. **Inertial-Only Optimization for Visual-Inertial Initialization**. *ICRA 2020*. **[PDF](https://arxiv.org/pdf/2003.05766.pdf)**
[ORBSLAM-Atlas] Richard Elvira, J. M. M. Montiel and Juan D. Tardós, **ORBSLAM-Atlas: a robust and accurate multi-map system**. *IROS 2019*. **[PDF](https://arxiv.org/pdf/1908.11585.pdf)**.

[ORBSLAM-Atlas] Richard Elvira, J. M. M. Montiel and Juan D. Tardós. **ORBSLAM-Atlas: a robust and accurate multi-map system**. *IROS 2019*. **[PDF](https://arxiv.org/pdf/1908.11585.pdf)**.
[ORBSLAM-VI] Raúl Mur-Artal, and Juan D. Tardós, **Visual-inertial monocular SLAM with map reuse**, IEEE Robotics and Automation Letters, vol. 2 no. 2, pp. 796-803, 2017. **[PDF](https://arxiv.org/pdf/1610.05949.pdf)**.

[Stereo and RGB-D] Raúl Mur-Artal and Juan D. Tardós. **ORB-SLAM2: an Open-Source SLAM System for Monocular, Stereo and RGB-D Cameras**. *IEEE Transactions on Robotics,* vol. 33, no. 5, pp. 1255-1262, 2017. **[PDF](https://128.84.21.199/pdf/1610.06475.pdf)**.
[Stereo and RGB-D] Raúl Mur-Artal and Juan D. Tardós. **ORB-SLAM2: an Open-Source SLAM System for Monocular, Stereo and RGB-D Cameras**. *IEEE Transactions on Robotics,* vol. 33, no. 5, pp. 1255-1262, 2017. **[PDF](https://arxiv.org/pdf/1610.06475.pdf)**.

[Monocular] Raúl Mur-Artal, J. M. M. Montiel and Juan D. Tardós. **ORB-SLAM: A Versatile and Accurate Monocular SLAM System**. *IEEE Transactions on Robotics,* vol. 31, no. 5, pp. 1147-1163, 2015. (**2015 IEEE Transactions on Robotics Best Paper Award**). **[PDF](http://webdiis.unizar.es/~raulmur/MurMontielTardosTRO15.pdf)**.
[Monocular] Raúl Mur-Artal, J. M. M. Montiel and Juan D. Tardós. **ORB-SLAM: A Versatile and Accurate Monocular SLAM System**. *IEEE Transactions on Robotics,* vol. 31, no. 5, pp. 1147-1163, 2015. (**2015 IEEE Transactions on Robotics Best Paper Award**). **[PDF](https://arxiv.org/pdf/1502.00956.pdf)**.

[DBoW2 Place Recognizer] Dorian Gálvez-López and Juan D. Tardós. **Bags of Binary Words for Fast Place Recognition in Image Sequences**. *IEEE Transactions on Robotics,* vol. 28, no. 5, pp. 1188-1197, 2012. **[PDF](http://doriangalvez.com/php/dl.php?dlp=GalvezTRO12.pdf)**
[DBoW2 Place Recognition] Dorian Gálvez-López and Juan D. Tardós. **Bags of Binary Words for Fast Place Recognition in Image Sequences**. *IEEE Transactions on Robotics,* vol. 28, no. 5, pp. 1188-1197, 2012. **[PDF](http://doriangalvez.com/php/dl.php?dlp=GalvezTRO12.pdf)**

# 1. License

ORB-SLAM2 is released under a [GPLv3 license](https://github.com/UZ-SLAMLab/ORB_SLAM3/LICENSE). For a list of all code/library dependencies (and associated licenses), please see [Dependencies.md](https://github.com/UZ-SLAMLab/ORB_SLAM3/Dependencies.md).
ORB-SLAM3 is released under [GPLv3 license](https://github.com/UZ-SLAMLab/ORB_SLAM3/LICENSE). For a list of all code/library dependencies (and associated licenses), please see [Dependencies.md](https://github.com/UZ-SLAMLab/ORB_SLAM3/Dependencies.md).

For a closed-source version of ORB-SLAM3 for commercial purposes, please contact the authors: orbslam (at) unizar (dot) es.

If you use ORB-SLAM2 (Monocular) in an academic work, please cite:

@article{murTRO2015,
title={{ORB-SLAM3}:},
author={Campos, Carlos, Elvira, Richard, G\´omez, Juan J., Montiel, J. M. M. and Tard\'os, Juan D.},
journal={IEEE Transactions on Robotics},
volume={},
number={},
pages={},
doi = {},
year={}
If you use ORB-SLAM3 in an academic work, please cite:

@article{Campos2020,
title={{ORB-SLAM3}: An Accurate Open-Source Library for Visual, Visual-Inertial and Multi-Map {SLAM}},
author={Campos, Carlos AND Elvira, Richard AND G\´omez, Juan J. AND Montiel, J. M. M. AND Tard\'os, Juan D.},
journal={arXiv preprint arXiv:xxxx.yyyy},
year={2020}
}

# 2. Prerequisites
Expand Down Expand Up @@ -85,7 +81,7 @@ This will create **libORB_SLAM3.so** at *lib* folder and the executables in *Ex

1. Download a sequence (ASL format) from http://projects.asl.ethz.ch/datasets/doku.php?id=kmavvisualinertialdatasets

2. Execute the following first command to execute as pure visual , or the second command to visual-inertial. Change PATH_TO_SEQUENCE_FOLDER and SEQUENCE according to the sequence you want to run.
2. Execute the following first command to execute as pure visual, or the second command to visual-inertial. Change PATH_TO_SEQUENCE_FOLDER and SEQUENCE according to the sequence you want to run.
```
./Examples/Monocular/mono_euroc Vocabulary/ORBvoc.txt Examples/Monocular/EuRoC.yaml PATH_TO_SEQUENCE_FOLDER/mav0/cam0/data Examples/Monocular/EuRoC_TimeStamps/SEQUENCE.txt
```
Expand Down Expand Up @@ -133,13 +129,12 @@ This will create **libORB_SLAM3.so** at *lib* folder and the executables in *Ex
There is an executable to process a set of dataset sequentially, each dataset starts from scratch a new map.

## EuRoC Monocular

1. Download a sequence (ASL format) from http://projects.asl.ethz.ch/datasets/doku.php?id=kmavvisualinertialdatasets

2. Execute the following command to execute for N dataset. Change PATH_TO_SEQUENCE_FOLDER_i and SEQUENCE_i according to the sequence you want to run.




## EuRoC Monocular-Inertial
1. Download a sequence (ASL format) from http://projects.asl.ethz.ch/datasets/doku.php?id=kmavvisualinertialdatasets

Expand Down

0 comments on commit b5352f0

Please sign in to comment.