-
Notifications
You must be signed in to change notification settings - Fork 73
Commit
This commit does not belong to any branch on this repository, and may belong to a fork outside of the repository.
Minkowski multiplication for semigroups, monoids, and commutative mon…
…oids (#1309)
- Loading branch information
Showing
5 changed files
with
787 additions
and
0 deletions.
There are no files selected for viewing
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
290 changes: 290 additions & 0 deletions
290
src/group-theory/minkowski-multiplication-commutative-monoids.lagda.md
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
Original file line number | Diff line number | Diff line change |
---|---|---|
@@ -0,0 +1,290 @@ | ||
# Minkowski multiplication of subsets of a commutative monoid | ||
|
||
```agda | ||
module group-theory.minkowski-multiplication-commutative-monoids where | ||
``` | ||
|
||
<details><summary>Imports</summary> | ||
|
||
```agda | ||
open import foundation.cartesian-product-types | ||
open import foundation.dependent-pair-types | ||
open import foundation.existential-quantification | ||
open import foundation.identity-types | ||
open import foundation.inhabited-subtypes | ||
open import foundation.powersets | ||
open import foundation.subtypes | ||
open import foundation.unital-binary-operations | ||
open import foundation.universe-levels | ||
|
||
open import group-theory.commutative-monoids | ||
open import group-theory.minkowski-multiplication-monoids | ||
open import group-theory.monoids | ||
open import group-theory.subsets-commutative-monoids | ||
|
||
open import logic.functoriality-existential-quantification | ||
``` | ||
|
||
</details> | ||
|
||
## Idea | ||
|
||
Given two [subsets](group-theory.subsets-commutative-monoids.md) `A` and `B` of | ||
a [commutative monoid](group-theory.commutative-monoids.md) `M`, the | ||
{{#concept "Minkowski multiplication" Disambiguation="on subsets of a commutative monoid" WD="Minkowski addition" WDID=Q1322294 Agda=minkowski-mul-Commutative-Monoid}} | ||
of `A` and `B` is the [set](foundation-core.sets.md) of elements that can be | ||
formed by multiplying an element of `A` and an element of `B`. This binary | ||
operation defines a commutative monoid structure on the | ||
[powerset](foundation.powersets.md) of `M`. | ||
|
||
## Definition | ||
|
||
```agda | ||
module _ | ||
{l1 l2 l3 : Level} | ||
(M : Commutative-Monoid l1) | ||
(A : subset-Commutative-Monoid l2 M) | ||
(B : subset-Commutative-Monoid l3 M) | ||
where | ||
|
||
minkowski-mul-Commutative-Monoid : | ||
subset-Commutative-Monoid (l1 ⊔ l2 ⊔ l3) M | ||
minkowski-mul-Commutative-Monoid = | ||
minkowski-mul-Monoid (monoid-Commutative-Monoid M) A B | ||
``` | ||
|
||
## Properties | ||
|
||
### Minkowski multiplication on subsets of a commutative monoid is associative | ||
|
||
```agda | ||
module _ | ||
{l1 l2 l3 l4 : Level} | ||
(M : Commutative-Monoid l1) | ||
(A : subset-Commutative-Monoid l2 M) | ||
(B : subset-Commutative-Monoid l3 M) | ||
(C : subset-Commutative-Monoid l4 M) | ||
where | ||
|
||
associative-minkowski-mul-Commutative-Monoid : | ||
minkowski-mul-Commutative-Monoid | ||
( M) | ||
( minkowski-mul-Commutative-Monoid M A B) | ||
( C) = | ||
minkowski-mul-Commutative-Monoid | ||
( M) | ||
( A) | ||
( minkowski-mul-Commutative-Monoid M B C) | ||
associative-minkowski-mul-Commutative-Monoid = | ||
associative-minkowski-mul-Monoid (monoid-Commutative-Monoid M) A B C | ||
``` | ||
|
||
### Minkowski multiplication on subsets of a commutative monoid is unital | ||
|
||
```agda | ||
module _ | ||
{l1 l2 : Level} | ||
(M : Commutative-Monoid l1) | ||
(A : subset-Commutative-Monoid l2 M) | ||
where | ||
|
||
left-unit-law-minkowski-mul-Commutative-Monoid : | ||
sim-subtype | ||
( minkowski-mul-Commutative-Monoid | ||
( M) | ||
( is-unit-prop-Commutative-Monoid M) | ||
( A)) | ||
( A) | ||
left-unit-law-minkowski-mul-Commutative-Monoid = | ||
left-unit-law-minkowski-mul-Monoid (monoid-Commutative-Monoid M) A | ||
|
||
right-unit-law-minkowski-mul-Commutative-Monoid : | ||
sim-subtype | ||
( minkowski-mul-Commutative-Monoid | ||
( M) | ||
( A) | ||
( is-unit-prop-Commutative-Monoid M)) | ||
( A) | ||
right-unit-law-minkowski-mul-Commutative-Monoid = | ||
right-unit-law-minkowski-mul-Monoid (monoid-Commutative-Monoid M) A | ||
``` | ||
|
||
### Minkowski multiplication on a commutative monoid is unital | ||
|
||
```agda | ||
module _ | ||
{l : Level} | ||
(M : Commutative-Monoid l) | ||
where | ||
|
||
is-unital-minkowski-mul-Commutative-Monoid : | ||
is-unital (minkowski-mul-Commutative-Monoid {l} {l} {l} M) | ||
is-unital-minkowski-mul-Commutative-Monoid = | ||
is-unital-minkowski-mul-Monoid (monoid-Commutative-Monoid M) | ||
``` | ||
|
||
### Minkowski multiplication on subsets of a commutative monoid is commutative | ||
|
||
```agda | ||
module _ | ||
{l1 l2 l3 : Level} | ||
(M : Commutative-Monoid l1) | ||
(A : subset-Commutative-Monoid l2 M) | ||
(B : subset-Commutative-Monoid l3 M) | ||
where | ||
|
||
commutative-minkowski-mul-leq-Commutative-Monoid : | ||
minkowski-mul-Commutative-Monoid M A B ⊆ | ||
minkowski-mul-Commutative-Monoid M B A | ||
commutative-minkowski-mul-leq-Commutative-Monoid x = | ||
elim-exists | ||
( minkowski-mul-Commutative-Monoid M B A x) | ||
( λ (a , b) (a∈A , b∈B , x=ab) → | ||
intro-exists | ||
( b , a) | ||
( b∈B , a∈A , x=ab ∙ commutative-mul-Commutative-Monoid M a b)) | ||
|
||
module _ | ||
{l1 l2 l3 : Level} | ||
(M : Commutative-Monoid l1) | ||
(A : subset-Commutative-Monoid l2 M) | ||
(B : subset-Commutative-Monoid l3 M) | ||
where | ||
|
||
commutative-minkowski-mul-Commutative-Monoid : | ||
minkowski-mul-Commutative-Monoid M A B = | ||
minkowski-mul-Commutative-Monoid M B A | ||
commutative-minkowski-mul-Commutative-Monoid = | ||
antisymmetric-sim-subtype | ||
( minkowski-mul-Commutative-Monoid M A B) | ||
( minkowski-mul-Commutative-Monoid M B A) | ||
( commutative-minkowski-mul-leq-Commutative-Monoid M A B , | ||
commutative-minkowski-mul-leq-Commutative-Monoid M B A) | ||
``` | ||
|
||
### Minkowski multiplication on subsets of a commutative monoid is a commutative monoid | ||
|
||
```agda | ||
module _ | ||
{l : Level} | ||
(M : Commutative-Monoid l) | ||
where | ||
|
||
commutative-monoid-minkowski-mul-Commutative-Monoid : | ||
Commutative-Monoid (lsuc l) | ||
pr1 commutative-monoid-minkowski-mul-Commutative-Monoid = | ||
monoid-minkowski-mul-Monoid (monoid-Commutative-Monoid M) | ||
pr2 commutative-monoid-minkowski-mul-Commutative-Monoid = | ||
commutative-minkowski-mul-Commutative-Monoid M | ||
``` | ||
|
||
### The Minkowski multiplication of two inhabited subsets is inhabited | ||
|
||
```agda | ||
module _ | ||
{l1 : Level} | ||
(M : Commutative-Monoid l1) | ||
where | ||
|
||
minkowski-mul-inhabited-is-inhabited-Commutative-Monoid : | ||
{l2 l3 : Level} → | ||
(A : subset-Commutative-Monoid l2 M) → | ||
(B : subset-Commutative-Monoid l3 M) → | ||
is-inhabited-subtype A → | ||
is-inhabited-subtype B → | ||
is-inhabited-subtype (minkowski-mul-Commutative-Monoid M A B) | ||
minkowski-mul-inhabited-is-inhabited-Commutative-Monoid = | ||
minkowski-mul-inhabited-is-inhabited-Monoid (monoid-Commutative-Monoid M) | ||
``` | ||
|
||
### Containment of subsets is preserved by Minkowski multiplication | ||
|
||
```agda | ||
module _ | ||
{l1 l2 l3 l4 : Level} | ||
(M : Commutative-Monoid l1) | ||
(B : subset-Commutative-Monoid l2 M) | ||
(A : subset-Commutative-Monoid l3 M) | ||
(A' : subset-Commutative-Monoid l4 M) | ||
where | ||
|
||
preserves-leq-left-minkowski-mul-Commutative-Monoid : | ||
A ⊆ A' → | ||
minkowski-mul-Commutative-Monoid M A B ⊆ | ||
minkowski-mul-Commutative-Monoid M A' B | ||
preserves-leq-left-minkowski-mul-Commutative-Monoid = | ||
preserves-leq-left-minkowski-mul-Monoid (monoid-Commutative-Monoid M) B A A' | ||
|
||
preserves-leq-right-minkowski-mul-Commutative-Monoid : | ||
A ⊆ A' → | ||
minkowski-mul-Commutative-Monoid M B A ⊆ | ||
minkowski-mul-Commutative-Monoid M B A' | ||
preserves-leq-right-minkowski-mul-Commutative-Monoid = | ||
preserves-leq-right-minkowski-mul-Monoid | ||
( monoid-Commutative-Monoid M) | ||
( B) | ||
( A) | ||
( A') | ||
``` | ||
|
||
### Similarity of subsets is preserved by Minkowski multiplication | ||
|
||
```agda | ||
module _ | ||
{l1 l2 l3 l4 : Level} | ||
(M : Commutative-Monoid l1) | ||
(B : subset-Commutative-Monoid l2 M) | ||
(A : subset-Commutative-Monoid l3 M) | ||
(A' : subset-Commutative-Monoid l4 M) | ||
where | ||
|
||
preserves-sim-left-minkowski-mul-Commutative-Monoid : | ||
sim-subtype A A' → | ||
sim-subtype | ||
( minkowski-mul-Commutative-Monoid M A B) | ||
( minkowski-mul-Commutative-Monoid M A' B) | ||
preserves-sim-left-minkowski-mul-Commutative-Monoid = | ||
preserves-sim-left-minkowski-mul-Monoid (monoid-Commutative-Monoid M) B A A' | ||
|
||
preserves-sim-right-minkowski-mul-Commutative-Monoid : | ||
sim-subtype A A' → | ||
sim-subtype | ||
( minkowski-mul-Commutative-Monoid M B A) | ||
( minkowski-mul-Commutative-Monoid M B A') | ||
preserves-sim-right-minkowski-mul-Commutative-Monoid = | ||
preserves-sim-right-minkowski-mul-Monoid | ||
( monoid-Commutative-Monoid M) | ||
( B) | ||
( A) | ||
( A') | ||
|
||
module _ | ||
{l1 l2 l3 l4 l5 : Level} | ||
(M : Commutative-Monoid l1) | ||
(A : subset-Commutative-Monoid l2 M) | ||
(A' : subset-Commutative-Monoid l3 M) | ||
(B : subset-Commutative-Monoid l4 M) | ||
(B' : subset-Commutative-Monoid l5 M) | ||
where | ||
|
||
preserves-sim-minkowski-mul-Commutative-Monoid : | ||
sim-subtype A A' → | ||
sim-subtype B B' → | ||
sim-subtype | ||
( minkowski-mul-Commutative-Monoid M A B) | ||
( minkowski-mul-Commutative-Monoid M A' B') | ||
preserves-sim-minkowski-mul-Commutative-Monoid = | ||
preserves-sim-minkowski-mul-Monoid (monoid-Commutative-Monoid M) A A' B B' | ||
``` | ||
|
||
## See also | ||
|
||
- Minkowski multiplication on semigroups is defined in | ||
[`group-theory.minkowski-multiplication-semigroups`](group-theory.minkowski-multiplication-semigroups.md). | ||
- Minkowski multiplication on monoids is defined in | ||
[`group-theory.minkowski-multiplication-monoids`](group-theory.minkowski-multiplication-monoids.md). | ||
|
||
## External links | ||
|
||
- [Minkowski addition](https://en.wikipedia.org/wiki/Minkowski_addition) at | ||
Wikipedia |
Oops, something went wrong.