Skip to content

Commit

Permalink
rename preserves-le-xxx
Browse files Browse the repository at this point in the history
  • Loading branch information
malarbol committed Apr 7, 2024
1 parent 10279d5 commit df3900b
Show file tree
Hide file tree
Showing 2 changed files with 40 additions and 13 deletions.
Original file line number Diff line number Diff line change
Expand Up @@ -226,6 +226,20 @@ module _
( is-positive-denominator-fraction-ℤ q)
```

### The similarity of integer fractions preserves strict inequality

```agda
module _
(p q p' q' : fraction-ℤ) (H : sim-fraction-ℤ p p') (K : sim-fraction-ℤ q q')
where

preserves-le-sim-fraction-ℤ : le-fraction-ℤ p q le-fraction-ℤ p' q'
preserves-le-sim-fraction-ℤ I =
concatenate-sim-le-fraction-ℤ p' p q'
( symmetric-sim-fraction-ℤ p p' H)
( concatenate-le-sim-fraction-ℤ p q q' I K)
```

### Fractions with equal denominator compare the same as their numerators

```agda
Expand Down
Original file line number Diff line number Diff line change
Expand Up @@ -145,28 +145,41 @@ module _
( fraction-ℚ z)
```

### Strict inequality on the rational numbers reflects the strict inequality of their underlying fractions
### The canonical map from integer fractions to the rational numbers preserves strict inequality

```agda
module _
(p q : fraction-ℤ)
where

preserves-le-rational-fraction-ℤ :
le-fraction-ℤ p q le-ℚ (rational-fraction-ℤ p) (rational-fraction-ℤ q)
preserves-le-rational-fraction-ℤ =
preserves-le-sim-fraction-ℤ
( p)
( q)
( reduce-fraction-ℤ p)
( reduce-fraction-ℤ q)
( sim-reduced-fraction-ℤ p)
( sim-reduced-fraction-ℤ q)

module _
(x : ℚ) (p : fraction-ℤ)
where

right-le-ℚ-rational-fraction-ℤ-le-fraction-ℤ :
le-fraction-ℤ (fraction-ℚ x) p
le-ℚ x (rational-fraction-ℤ p)
right-le-ℚ-rational-fraction-ℤ-le-fraction-ℤ H =
preserves-le-right-rational-fraction-ℤ :
le-fraction-ℤ (fraction-ℚ x) p le-ℚ x (rational-fraction-ℤ p)
preserves-le-right-rational-fraction-ℤ H =
concatenate-le-sim-fraction-ℤ
( fraction-ℚ x)
( p)
( fraction-ℚ ( rational-fraction-ℤ p))
( H)
( sim-reduced-fraction-ℤ p)

left-le-ℚ-rational-fraction-ℤ-le-fraction-ℤ :
le-fraction-ℤ p (fraction-ℚ x)
le-ℚ (rational-fraction-ℤ p) x
left-le-ℚ-rational-fraction-ℤ-le-fraction-ℤ =
preserves-le-left-rational-fraction-ℤ :
le-fraction-ℤ p (fraction-ℚ x) le-ℚ (rational-fraction-ℤ p) x
preserves-le-left-rational-fraction-ℤ =
concatenate-sim-le-fraction-ℤ
( fraction-ℚ ( rational-fraction-ℤ p))
( p)
Expand All @@ -187,7 +200,7 @@ module _
left-∃-le-ℚ : ∃ ℚ (λ q le-ℚ q x)
left-∃-le-ℚ = intro-∃
( rational-fraction-ℤ frac)
( left-le--rational-fraction-ℤ-le-fraction-ℤ x frac
( preserves-le-left-rational-fraction-ℤ x frac
( le-fraction-le-numerator-fraction-ℤ
( frac)
( fraction-ℚ x)
Expand All @@ -200,7 +213,7 @@ module _
right-∃-le-ℚ : ∃ ℚ (λ r le-ℚ x r)
right-∃-le-ℚ = intro-∃
( rational-fraction-ℤ frac)
( right-le--rational-fraction-ℤ-le-fraction-ℤ x frac
( preserves-le-right-rational-fraction-ℤ x frac
( le-fraction-le-numerator-fraction-ℤ
( fraction-ℚ x)
( frac)
Expand Down Expand Up @@ -251,13 +264,13 @@ module _

le-left-mediant-ℚ : le-ℚ x (mediant-ℚ x y)
le-left-mediant-ℚ =
right-le--rational-fraction-ℤ-le-fraction-ℤ x
preserves-le-right-rational-fraction-ℤ x
( mediant-fraction-ℤ (fraction-ℚ x) (fraction-ℚ y))
( le-left-mediant-fraction-ℤ (fraction-ℚ x) (fraction-ℚ y) H)

le-right-mediant-ℚ : le-ℚ (mediant-ℚ x y) y
le-right-mediant-ℚ =
left-le--rational-fraction-ℤ-le-fraction-ℤ y
preserves-le-left-rational-fraction-ℤ y
( mediant-fraction-ℤ (fraction-ℚ x) (fraction-ℚ y))
( le-right-mediant-fraction-ℤ (fraction-ℚ x) (fraction-ℚ y) H)
```
Expand Down

0 comments on commit df3900b

Please sign in to comment.