Skip to content

Commit

Permalink
fix readme
Browse files Browse the repository at this point in the history
  • Loading branch information
UnravelSports [JB] committed Jul 22, 2024
1 parent 196936d commit b9be6f0
Show file tree
Hide file tree
Showing 2 changed files with 8 additions and 36 deletions.
43 changes: 8 additions & 35 deletions README.md
Original file line number Diff line number Diff line change
Expand Up @@ -15,49 +15,22 @@ The **unravelsports** package aims to aid researchers, analysts and enthusiasts
🌀 Features
-----

<ul style="list-style: none; padding: 0; margin-left: 1.2em;">
<li style="margin-bottom: 8px;">
<span style="display: inline-block; width: 1.2em; margin-right: 0.5em;">⚽</span>
Convert <strong>positional soccer data</strong> into graphs to train <strong>graph neural networks</strong> by leveraging the powerful <a href="https://github.com/PySport/kloppy/tree/master"><strong>Kloppy</strong></a> data conversion standard and <a href="https://github.com/danielegrattarola/spektral"><strong>Spektral</strong></a> - a flexible framework for creating GNNs.
</li>
<li style="margin-bottom: 8px;">
<span style="display: inline-block; width: 1.2em; margin-right: 0.5em;">⚽</span>
Randomize and split data into <strong>train, test and validation sets</strong> along matches, sequences or possessions to avoid leakage and improve model quality.
</li>
<li style="margin-bottom: 8px;">
<span style="display: inline-block; width: 1.2em; margin-right: 0.5em;">⚽</span>
Due to the power of <strong>Kloppy</strong>, <strong>unravelsports</strong> supports these actions for <em>Metrica</em>, <em>Sportec</em>, <em>Tracab (CyronHego)</em>, <em>SecondSpectrum</em>, <em>SkillCorner</em> and <em>StatsPerform</em> tracking data.
</li>
<li style="margin-bottom: 8px;">
<span style="display: inline-block; width: 1.2em; margin-right: 0.5em;">⏳</span>
<strong>More to come...</strong>
</li>
</ul>
- ⚽ Converting **positional soccer data** into graphs to train **graph neural networks** by leveraging the powerful [**Kloppy**](https://github.com/PySport/kloppy/tree/master) data conversion standard and [**Spektral**](https://github.com/danielegrattarola/spektral) - a flexible framework for creating graph neural networks.
- ⚽ Randomizing and splitting data into **train, test and validation sets** along matches, sequences or possessions to avoid leakage and improve model quality.
- ⚽ Due to the power of **Kloppy**, **unravelsports** supports these actions for _Metrica_, _Sportec_, _Tracab (CyronHego)_, _SecondSpectrum_, _SkillCorner_ and _StatsPerform_ tracking data.

🌀 Getting Started
-----
<ul style="list-style: none; padding: 0; margin-left: 1.2em;">
<li style="margin-bottom: 8px;">
<span style="display: inline-block; width: 1.2em; margin-right: 0.5em;">📖</span>
The <a href="examples/0_getting_started.ipynb"><strong>Getting Started Jupyter Notebook</strong></a> explains how to convert any positional tracking data from <strong>Kloppy</strong> to <strong>Spektral GNN</strong> in a few easy steps while walking you through the most important functionality.
</li>
<li style="margin-bottom: 8px;">
<span style="display: inline-block; width: 1.2em; margin-right: 0.5em;">📖</span>
The <a href="examples/1_tutorial_graph_converter.ipynb"><strong>Graph Converter Tutorial Jupyter Notebook</strong></a> gives an in-depth walkthrough.
</li>
</ul>
📖 The [**Getting Started Jupyter Notebook**](examples/0_getting_started.ipynb) explains how to convert any positional tracking data from **Kloppy** to **Spektral GNN** in a few easy steps while walking you through the most important features and documentation.

📖 The [**Graph Converter Tutorial Jupyter Notebook**](examples/1_tutorial_graph_converter.ipynb) gives an in-depth walkthrough.

🌀 Documentation
-----
For now, follow the [**Graph Converter Tutorial**](examples/1_tutorial_graph_converter.ipynb), more documentation will follow!

Additional reading:
<ul style="list-style: none; padding: 0; margin-left: 1.2em;">
<li style="margin-bottom: 8px;">
<span style="display: inline-block; width: 1.2em; margin-right: 0.5em;">📖</span>
<a href="https://github.com/USSoccerFederation/ussf_ssac_23_soccer_gnn/tree/main"><strong>A Graph Neural Network Deep-dive into Successful Counterattacks {A. Sahasrabudhe & J. Bekkers, 2023}</strong></a>
</li>
</ul>
- 📖 [A Graph Neural Network Deep-dive into Successful Counterattacks {A. Sahasrabudhe & J. Bekkers, 2023}](https://github.com/USSoccerFederation/ussf_ssac_23_soccer_gnn/tree/main)

🌀 Installation
----
Expand All @@ -71,7 +44,7 @@ pip install unravelsports

🌀 Contributing
----
All contributions, bug reports, bug fixes, documentation improvements, enhancements, and ideas are welcome. Feel free to create a Pull Request for any improvements you make that do not contribute to winning more games!
All contributions, bug reports, bug fixes, documentation improvements, enhancements, and ideas are welcome.

An overview on how to contribute can be found in the [**contributing guide**](CONTRIBUTING.md).

Expand Down
1 change: 0 additions & 1 deletion unravel/__init__.py
Original file line number Diff line number Diff line change
@@ -1,3 +1,2 @@
from .soccer import *
from .utils import *
from .classifiers import *

0 comments on commit b9be6f0

Please sign in to comment.