Skip to content

Commit

Permalink
Translate FST to VariantList
Browse files Browse the repository at this point in the history
  • Loading branch information
ibbem committed May 20, 2024
1 parent 74b83ea commit a0eb03f
Show file tree
Hide file tree
Showing 4 changed files with 268 additions and 4 deletions.
13 changes: 11 additions & 2 deletions src/Lang/All/Generic.agda
Original file line number Diff line number Diff line change
@@ -1,9 +1,13 @@
open import Framework.Definitions using (𝕍)
open import Framework.Definitions using (𝕍; 𝔽; 𝔸)
open import Framework.Construct using (_∈ₛ_)
open import Construct.Artifact using () renaming (Syntax to Artifact)

module Lang.All.Generic (Variant : 𝕍) (Artifact∈ₛVariant : Artifact ∈ₛ Variant) where

open import Size using (∞)

open import Framework.Variants using (Rose)

module VariantList where
open import Lang.VariantList Variant public

Expand All @@ -30,4 +34,9 @@ module OC where
open Lang.OC.Sem Variant Artifact∈ₛVariant public

module FST where
open import Lang.FST renaming (FSTL-Sem to ⟦_⟧) public
open import Lang.FST hiding (FST; FSTL-Sem; Conf) public

Configuration = Lang.FST.Conf

⟦_⟧ : {F : 𝔽} {A : 𝔸} Impose.SPL F A Configuration F Rose ∞ A
⟦_⟧ {F} = Lang.FST.FSTL-Sem F
4 changes: 2 additions & 2 deletions src/Translation/Lang/FST-to-OC.agda
Original file line number Diff line number Diff line change
Expand Up @@ -75,12 +75,12 @@ counter-example = zero ◀ (

-- There are four relevant configurations for `counter-example` because it uses
-- exactly two features: `c₁`, `c₂`, `all-oc true` and `all-oc false`.
c₁ : FST.Conf F
c₁ : FST.Configuration F
c₁ f with f ==ꟳ f₁
c₁ f | yes f≡f₁ = true
c₁ f | no f≢f₁ = false

c₂ : FST.Conf F
c₂ : FST.Configuration F
c₂ f with f ==ꟳ f₂
c₂ f | yes f≡f₂ = true
c₂ f | no f≢f₂ = false
Expand Down
241 changes: 241 additions & 0 deletions src/Translation/Lang/FST-to-VariantList.agda
Original file line number Diff line number Diff line change
@@ -0,0 +1,241 @@
open import Framework.Definitions using (𝔽; 𝔸; atoms)
open import Relation.Binary using (DecidableEquality)

module Translation.Lang.FST-to-VariantList (F : 𝔽) (_==ꟳ_ : DecidableEquality F) where

open import Data.Bool using (Bool; true; false)
open import Data.Empty using (⊥-elim)
open import Data.List as List using (List; []; _∷_; map)
open import Data.List.Membership.Propositional using (_∈_; mapWith∈)
open import Data.List.NonEmpty as List⁺ using (List⁺; _∷_; _⁺++⁺_)
import Data.List.NonEmpty.Properties as List⁺
import Data.List.Properties as List
open import Data.List.Relation.Unary.All using (All; []; _∷_)
open import Data.List.Relation.Unary.Any using (here; there)
open import Data.Nat using (ℕ; _<_; s≤s; z≤n; _+_)
import Data.Nat.Properties as ℕ
open import Data.Product using (_,_)
open import Relation.Binary.PropositionalEquality as Eq using (_≡_; refl; _≢_; _≗_)
open import Relation.Nullary.Decidable using (yes; no)
open import Size using (∞)

import Data.EqIndexedSet as IndexedSet
open import Framework.Compiler using (LanguageCompiler)
import Framework.Relation.Expressiveness
open import Framework.Relation.Function using (from; to)
open import Framework.Variants using (Rose; _-<_>-)
open import Util.List using (find-or-last; map-find-or-last; find-or-last-prepend-+; find-or-last-append)

open Framework.Relation.Expressiveness (Rose ∞) using (_≽_; expressiveness-from-compiler)
open IndexedSet using (_≅[_][_]_; _⊆[_]_; ≅[]-sym)

open import Lang.All
open FST using (FSTL)
open FST.Impose using (SPL; Feature)
module Impose {F} {A} = FST.Impose F A
open Impose using (_◀_; _::_; name; select; forget-uniqueness; ⊛-all)
open VariantList using (VariantList; VariantListL)

config-with : Bool F FST.Configuration F FST.Configuration F
config-with value f c f' with f ==ꟳ f'
config-with value f c f' | yes _ = value
config-with value f c f' | no _ = c f'

configs : List F List⁺ (FST.Configuration F)
configs [] = (λ _ false) ∷ []
configs (f ∷ fs) = List⁺.map (config-with false f) (configs fs) ⁺++⁺ List⁺.map (config-with true f) (configs fs)

translate : {A : 𝔸} SPL F A VariantList A
translate {A} (a ◀ fs) = List⁺.map (λ c FST.⟦ a ◀ fs ⟧ c) (configs (map name fs))

conf' : FST.Configuration F List F
conf' c [] = 0
conf' c (f ∷ fs) with c f
conf' c (f ∷ fs) | true = List⁺.length (configs fs) + conf' c fs
conf' c (f ∷ fs) | false = conf' c fs

conf : {A : 𝔸} (e : SPL F A) FST.Configuration F VariantList.Configuration
conf {A} (_ ◀ fs) c = conf' c (map name fs)

fnoc : {A : 𝔸} (e : SPL F A) VariantList.Configuration FST.Configuration F
fnoc {A} (_ ◀ fs) n f = find-or-last n (configs (map name fs)) f

conf'<configs : (c : FST.Configuration F) (fs : List F)
conf' c fs < List⁺.length (configs fs)
conf'<configs c [] = s≤s z≤n
conf'<configs c (f ∷ fs) with c f
conf'<configs c (f ∷ fs) | true =
begin-strict
List⁺.length (configs fs) + conf' c fs
<⟨ ℕ.+-monoʳ-< (List⁺.length (configs fs)) (conf'<configs c fs) ⟩
List⁺.length (configs fs) + List⁺.length (configs fs)
≡⟨ Eq.cong₂ _+_ (List⁺.length-map (config-with false f) (configs fs)) (List⁺.length-map (config-with true f) (configs fs)) ⟨
List⁺.length (List⁺.map (config-with false f) (configs fs)) + List⁺.length (List⁺.map (config-with true f) (configs fs))
≡⟨ List.length-++ (List⁺.toList (List⁺.map (config-with false f) (configs fs))) ⟨
List⁺.length (List⁺.map (config-with false f) (configs fs) ⁺++⁺ List⁺.map (config-with true f) (configs fs))
≡⟨⟩
List⁺.length (configs (f ∷ fs))
where
open ℕ.≤-Reasoning
conf'<configs c (f ∷ fs) | false =
begin-strict
conf' c fs
<⟨ conf'<configs c fs ⟩
List⁺.length (configs fs)
≡⟨ List⁺.length-map (config-with false f) (configs fs) ⟨
List⁺.length (List⁺.map (config-with false f) (configs fs))
≤⟨ ℕ.m≤m+n (List⁺.length (List⁺.map (config-with false f) (configs fs))) (List⁺.length (List⁺.map (config-with true f) (configs fs))) ⟩
List⁺.length (List⁺.map (config-with false f) (configs fs)) + List⁺.length (List⁺.map (config-with true f) (configs fs))
≡⟨ List.length-++ (List⁺.toList (List⁺.map (config-with false f) (configs fs))) ⟨
List⁺.length (List⁺.map (config-with false f) (configs fs) ⁺++⁺ List⁺.map (config-with true f) (configs fs))
≡⟨⟩
List⁺.length (configs (f ∷ fs))
where
open ℕ.≤-Reasoning

config-with-≡ : (b : Bool) (f : F) (c : FST.Configuration F) config-with b f c f ≡ b
config-with-≡ b f c with f ==ꟳ f
config-with-≡ b f c | no f≢f = ⊥-elim (f≢f refl)
config-with-≡ b f c | yes _ = refl

config-with-≢ : (b : Bool) (f f' : F) f ≢ f' (c : FST.Configuration F) config-with b f' c f ≡ c f
config-with-≢ b f f' f≢f' c with f' ==ꟳ f
config-with-≢ b f f' f≢f' c | no _ = refl
config-with-≢ b f f' f≢f' c | yes f'≡f = ⊥-elim (f≢f' (Eq.sym f'≡f))

find-or-last-config-with : (c : FST.Configuration F) (b : Bool) (f f' : F) (fs : List F) (v : FST.Configuration F Bool)
((c : FST.Configuration F) config-with b f' c f ≡ v c)
find-or-last (conf' c fs) (List⁺.map (config-with b f') (configs fs)) f ≡ v (find-or-last (conf' c fs) (configs fs))
find-or-last-config-with c b f f' fs v p =
find-or-last (conf' c fs) (List⁺.map (config-with b f') (configs fs)) f
≡⟨ map-find-or-last (λ c c f) (conf' c fs) (List⁺.map (config-with b f') (configs fs)) ⟩
find-or-last (conf' c fs) (List⁺.map (λ c c f) (List⁺.map (config-with b f') (configs fs)))
≡⟨ Eq.cong₂ find-or-last refl (List⁺.map-∘ (configs fs)) ⟨
find-or-last (conf' c fs) (List⁺.map (λ c config-with b f' c f) (configs fs))
≡⟨ Eq.cong₂ find-or-last refl (List⁺.map-cong p (configs fs)) ⟩
find-or-last (conf' c fs) (List⁺.map v (configs fs))
≡⟨ map-find-or-last v (conf' c fs) (configs fs) ⟨
v (find-or-last (conf' c fs) (configs fs))
where
open Eq.≡-Reasoning

conf'-lemma : (c : FST.Configuration F) (f : F) (fs : List F) f ∈ fs find-or-last (conf' c fs) (configs fs) f ≡ c f
conf'-lemma c f (f' ∷ fs) f∈fs with f ==ꟳ f'
conf'-lemma c f (.f ∷ fs) f∈fs | yes refl with c f
conf'-lemma c f (.f ∷ fs) f∈fs | yes refl | true =
find-or-last (List⁺.length (configs fs) + conf' c fs) (configs (f ∷ fs)) f
≡⟨⟩
find-or-last (List⁺.length (configs fs) + conf' c fs) (List⁺.map (config-with false f) (configs fs) ⁺++⁺ List⁺.map (config-with true f) (configs fs)) f
≡⟨ Eq.cong-app (Eq.cong₂ find-or-last {u = List⁺.map (config-with false f) (configs fs) ⁺++⁺ List⁺.map (config-with true f) (configs fs)} (Eq.cong₂ _+_ (List⁺.length-map (config-with false f) (configs fs)) refl) refl) f ⟨
find-or-last (List⁺.length (List⁺.map (config-with false f) (configs fs)) + conf' c fs) (List⁺.map (config-with false f) (configs fs) ⁺++⁺ List⁺.map (config-with true f) (configs fs)) f
≡⟨ Eq.cong-app (find-or-last-prepend-+ (conf' c fs) (List⁺.map (config-with false f) (configs fs)) (List⁺.map (config-with true f) (configs fs))) f ⟩
find-or-last (conf' c fs) (List⁺.map (config-with true f) (configs fs)) f
≡⟨ find-or-last-config-with c true f f fs (λ c true) (λ c config-with-≡ true f c) ⟩
true
where
open Eq.≡-Reasoning
conf'-lemma c f (.f ∷ fs) f∈fs | yes refl | false =
find-or-last (conf' c fs) (configs (f ∷ fs)) f
≡⟨⟩
find-or-last (conf' c fs) (List⁺.map (config-with false f) (configs fs) ⁺++⁺ List⁺.map (config-with true f) (configs fs)) f
≡⟨ Eq.cong-app (find-or-last-append (List⁺.map (config-with false f) (configs fs)) (List⁺.map (config-with true f) (configs fs)) (ℕ.≤-trans (conf'<configs c fs) (ℕ.≤-reflexive (Eq.sym (List⁺.length-map (config-with false f) (configs fs)))))) f ⟩
find-or-last (conf' c fs) (List⁺.map (config-with false f) (configs fs)) f
≡⟨ find-or-last-config-with c false f f fs (λ c false) (λ c config-with-≡ false f c) ⟩
false
where
open Eq.≡-Reasoning
conf'-lemma c f (f' ∷ fs) (here f≡f') | no f≢f' = ⊥-elim (f≢f' f≡f')
conf'-lemma c f (f' ∷ fs) (there f∈fs) | no f≢f' with c f'
conf'-lemma c f (f' ∷ fs) (there f∈fs) | no f≢f' | true =
find-or-last (List⁺.length (configs fs) + conf' c fs) (configs (f' ∷ fs)) f
≡⟨⟩
find-or-last (List⁺.length (configs fs) + conf' c fs) (List⁺.map (config-with false f') (configs fs) ⁺++⁺ List⁺.map (config-with true f') (configs fs)) f
≡⟨ Eq.cong-app (Eq.cong₂ find-or-last {u = List⁺.map (config-with false f') (configs fs) ⁺++⁺ List⁺.map (config-with true f') (configs fs)} (Eq.cong₂ _+_ (List⁺.length-map (config-with false f') (configs fs)) refl) refl) f ⟨
find-or-last (List⁺.length (List⁺.map (config-with false f') (configs fs)) + conf' c fs) (List⁺.map (config-with false f') (configs fs) ⁺++⁺ List⁺.map (config-with true f') (configs fs)) f
≡⟨ Eq.cong-app (find-or-last-prepend-+ (conf' c fs) (List⁺.map (config-with false f') (configs fs)) (List⁺.map (config-with true f') (configs fs))) f ⟩
find-or-last (conf' c fs) (List⁺.map (config-with true f') (configs fs)) f
≡⟨ find-or-last-config-with c true f f' fs (λ c c f) (λ c config-with-≢ true f f' f≢f' c) ⟩
find-or-last (conf' c fs) (configs fs) f
≡⟨ conf'-lemma c f fs f∈fs ⟩
c f
where
open Eq.≡-Reasoning
conf'-lemma c f (f' ∷ fs) (there f∈fs) | no f≢f' | false =
find-or-last (conf' c fs) (configs (f' ∷ fs)) f
≡⟨⟩
find-or-last (conf' c fs) (List⁺.map (config-with false f') (configs fs) ⁺++⁺ List⁺.map (config-with true f') (configs fs)) f
≡⟨ Eq.cong-app (find-or-last-append (List⁺.map (config-with false f') (configs fs)) (List⁺.map (config-with true f') (configs fs)) ((ℕ.≤-trans (conf'<configs c fs) (ℕ.≤-reflexive (Eq.sym (List⁺.length-map (config-with false f') (configs fs))))))) f ⟩
find-or-last (conf' c fs) (List⁺.map (config-with false f') (configs fs)) f
≡⟨ find-or-last-config-with c false f f' fs (λ c c f) (λ c config-with-≢ false f f' f≢f' c) ⟩
find-or-last (conf' c fs) (configs fs) f
≡⟨ conf'-lemma c f fs f∈fs ⟩
c f
where
open Eq.≡-Reasoning

AllWith∈ : {A : Set} {P : A Set} (as : List A) ((a : A) a ∈ as P a) All P as
AllWith∈ [] f = []
AllWith∈ (a ∷ as) f = f a (here refl) ∷ AllWith∈ as (λ a a∈as f a (there a∈as))

⟦⟧-cong : {A : 𝔸} (a : atoms A) (fs : List (Feature F A)) (c : FST.Configuration F)
(g : FST.Configuration F FST.Configuration F)
All (λ f g c f ≡ c f) (map name fs)
FST.⟦ a ◀ fs ⟧ (g c) ≡ FST.⟦ a ◀ fs ⟧ c
⟦⟧-cong {A} a fs c g ps = Eq.cong₂ _-<_>- refl (Eq.cong forget-uniqueness (Eq.cong ⊛-all (go fs ps)))
where
go : (fs : List (Feature F A))
All (λ f g c f ≡ c f) (map name fs)
select (g c) fs ≡ select c fs
go [] p = refl
go ((f :: i) ∷ fs) (px ∷ p) with (g c) f | c f
go ((f :: i) ∷ fs) (px ∷ p) | false | false = go fs p
go ((f :: i) ∷ fs) (px ∷ p) | true | true = Eq.cong₂ _∷_ refl (go fs p)

preserves-⊆ : {A : 𝔸} (e : SPL F A) VariantList.⟦ translate e ⟧ ⊆[ fnoc e ] FST.⟦ e ⟧
preserves-⊆ e@(a ◀ fs) c =
VariantList.⟦ translate e ⟧ c
≡⟨⟩
find-or-last c (translate e)
≡⟨⟩
find-or-last c (List⁺.map (λ c FST.⟦ e ⟧ c) (configs (map name fs)))
≡⟨ map-find-or-last (λ c FST.⟦ e ⟧ c) c (configs (map name fs)) ⟨
FST.⟦ e ⟧ (find-or-last c (configs (map name fs)))
≡⟨⟩
FST.⟦ e ⟧ (fnoc e c)
where
open Eq.≡-Reasoning

preserves-⊇ : {A : 𝔸} (e : SPL F A) FST.⟦ e ⟧ ⊆[ conf e ] VariantList.⟦ translate e ⟧
preserves-⊇ e@(a ◀ fs) c =
FST.⟦ e ⟧ c
≡⟨ ⟦⟧-cong a fs c (λ c find-or-last (conf e c) (configs (map name fs))) (AllWith∈ (map name fs) (λ f f∈fs conf'-lemma c f (map name fs) f∈fs)) ⟨
FST.⟦ e ⟧ (find-or-last (conf e c) (configs (map name fs)))
≡⟨ map-find-or-last (λ c FST.⟦ e ⟧ c) (conf e c) (configs (map name fs)) ⟩
find-or-last (conf e c) (List⁺.map (λ c FST.⟦ e ⟧ c) (configs (map name fs)))
≡⟨⟩
find-or-last (conf e c) (translate e)
≡⟨⟩
VariantList.⟦ translate e ⟧ (conf e c)
where
open Eq.≡-Reasoning

preserves : {A : 𝔸} (e : SPL F A) VariantList.⟦ translate e ⟧ ≅[ fnoc e ][ conf e ] FST.⟦ e ⟧
preserves e = preserves-⊆ e , preserves-⊇ e

FST→VariantList : LanguageCompiler (FSTL F) VariantListL
FST→VariantList .LanguageCompiler.compile = translate
FST→VariantList .LanguageCompiler.config-compiler expr .to = conf expr
FST→VariantList .LanguageCompiler.config-compiler expr .from = fnoc expr
FST→VariantList .LanguageCompiler.preserves expr = ≅[]-sym (preserves expr)

VariantList≽FST : VariantListL ≽ FSTL F
VariantList≽FST = expressiveness-from-compiler FST→VariantList
14 changes: 14 additions & 0 deletions src/Translation/LanguageMap.lagda.md
Original file line number Diff line number Diff line change
Expand Up @@ -68,6 +68,7 @@ import Translation.Lang.NADT-to-CCC Variant mkArtifact as NADT-to-CCC
import Translation.Lang.OC-to-2CC as OC-to-2CC
import Translation.Lang.OC-to-FST as OC-to-FST
import Translation.Lang.FST-to-OC as FST-to-OC
import Translation.Lang.FST-to-VariantList as FST-to-VariantList
```


Expand Down Expand Up @@ -117,6 +118,13 @@ module _ {F : 𝔽} where
open OC-to-2CC F using (OC→2CC) public
```

## Feature Structure Trees vs Variant Lists

```agda
module _ {F : 𝔽} (_==_ : DecidableEquality F) where
open FST-to-VariantList F _==_ using (FST→VariantList) public
```


## Expressiveness

Expand Down Expand Up @@ -187,6 +195,9 @@ module Expressiveness {F : 𝔽} (f : F × ℕ → F) (f⁻¹ : F → F × ℕ)
VariantList≽ADT : (_==_ : DecidableEquality F) → VariantListL ≽ ADTL Variant F
VariantList≽ADT _==_ = ADT-to-VariantList.VariantList≽ADT F Variant _==_
VariantList≽FST : (_==_ : DecidableEquality F) → VariantListL ≽ FSTL F
VariantList≽FST _==_ = FST-to-VariantList.VariantList≽FST F _==_
CCC≽VariantList : F → CCCL F ≽ VariantListL
CCC≽VariantList D = VariantList-to-CCC.Translate.CCC≽VariantList F D Variant mkArtifact CCC-Rose-encoder
Expand Down Expand Up @@ -303,4 +314,7 @@ NADT-is-sound _==_ = soundness-by-expressiveness (CCC-is-sound _==_) (NADT-to-CC
OC-is-sound : ∀ {F : 𝔽} (_==_ : DecidableEquality F) → Sound (WFOCL F)
OC-is-sound {F} _==_ = soundness-by-expressiveness (2CC-is-sound _==_) (OC-to-2CC.2CC≽OC F)
FST-is-sound : ∀ {F : 𝔽} (_==_ : DecidableEquality F) → Sound (FSTL F)
FST-is-sound {F} _==_ = soundness-by-expressiveness VariantList-is-Sound (FST-to-VariantList.VariantList≽FST F _==_)
```

0 comments on commit a0eb03f

Please sign in to comment.