Skip to content
New issue

Have a question about this project? Sign up for a free GitHub account to open an issue and contact its maintainers and the community.

By clicking “Sign up for GitHub”, you agree to our terms of service and privacy statement. We’ll occasionally send you account related emails.

Already on GitHub? Sign in to your account

add unit test for conv2d #681

Merged
merged 1 commit into from
Feb 20, 2024
Merged
Changes from all commits
Commits
File filter

Filter by extension

Filter by extension

Conversations
Failed to load comments.
Loading
Jump to
Jump to file
Failed to load files.
Loading
Diff view
Diff view
150 changes: 149 additions & 1 deletion src/tim/vx/ops/conv2d_test.cc
Original file line number Diff line number Diff line change
Expand Up @@ -1975,4 +1975,152 @@ TEST(Conv2d, kernel_bigger_than_input_SAME) {
std::vector<float> output(output_size);
EXPECT_TRUE(output_tensor->CopyDataFromTensor(output.data()));
EXPECT_EQ(golden, output);
}
}

TEST(Conv2d, float16_kernel11_stride22) {
auto ctx = tim::vx::Context::Create();
auto graph = ctx->CreateGraph();
using namespace half_float::literal;

tim::vx::ShapeType input_shape({1, 1, 8, 1}); //whcn
tim::vx::ShapeType weight_shape({1, 1, 8, 2}); //whio
tim::vx::ShapeType bias_shape({weight_shape[3]});
tim::vx::ShapeType output_shape(
{1, 1, weight_shape[3], input_shape[3]}); //whcn

tim::vx::TensorSpec input_spec(tim::vx::DataType::FLOAT16, input_shape,
tim::vx::TensorAttribute::INPUT);
tim::vx::TensorSpec weight_spec(tim::vx::DataType::FLOAT16, weight_shape,
tim::vx::TensorAttribute::INPUT);
tim::vx::TensorSpec bias_spec(tim::vx::DataType::FLOAT16, bias_shape,
tim::vx::TensorAttribute::CONSTANT);
tim::vx::TensorSpec output_spec(tim::vx::DataType::FLOAT16, output_shape,
tim::vx::TensorAttribute::OUTPUT);

// Input data nchw

std::vector<half_float::half> input_data = {
// 0.0461, 0.4024, -1.0115, 0.2167, -0.6123, 0.5036, 0.2310, 0.6931
0.0461_h, 0.4024_h, -1.0115_h, 0.2167_h, -0.6123_h, 0.5036_h, 0.2310_h, 0.6931_h
};

// weight data oihw
std::vector<half_float::half> weight_data = {
-0.1530_h, 0.1108_h, -0.1847_h, 0.1636_h, 0.0716_h, -0.1383_h, -0.1735_h, 0.0915_h,
0.3298_h, 0.1697_h, -0.0341_h, -0.0172_h, 0.2009_h, -0.2457_h, 0.1176_h, -0.1171_h
};

// bias data
std::vector<half_float::half> bias_data = {0.0_h, 0.0_h, 0.0_h};

std::vector<half_float::half> golden = {
// first channel
0.1697_h, -0.1865_h};

auto input_tensor = graph->CreateTensor(input_spec);
auto weight_tensor = graph->CreateTensor(weight_spec, weight_data.data());
auto bias_tensor = graph->CreateTensor(bias_spec, bias_data.data());
auto output_tensor = graph->CreateTensor(output_spec);

auto padding = tim::vx::PadType::AUTO;
std::array<uint32_t, 2> stride({2, 2});
std::array<uint32_t, 2> dilation({1, 1});
std::array<uint32_t, 2> ksize({1,1});
std::array<uint32_t, 4> conv_pad = {0, 0, 0, 0};

auto conv2d =
graph->CreateOperation<tim::vx::ops::Conv2d>(2, padding, ksize, stride, dilation, conv_pad);
(*conv2d)
.BindInput(input_tensor)
.BindInput(weight_tensor)
// .BindInput(bias_tensor)
.BindOutput(output_tensor);

EXPECT_TRUE(graph->Compile());

input_tensor->CopyDataToTensor(input_data.data());

EXPECT_TRUE(graph->Run());

uint32_t output_size = 1;
for (auto i : output_tensor->GetShape()) {
output_size *= i;
}
std::vector<half_float::half> output(output_size);
EXPECT_TRUE(output_tensor->CopyDataFromTensor(output.data()));
EXPECT_TRUE(ArraysMatch(golden, output, (half_float::half)0.1));
}

TEST(Conv2d, float16_kernel11_stride22_2) {
auto ctx = tim::vx::Context::Create();
auto graph = ctx->CreateGraph();
using namespace half_float::literal;

tim::vx::ShapeType input_shape({4, 4, 1, 1}); //whcn
tim::vx::ShapeType weight_shape({1, 1, 1, 1}); //whio
tim::vx::ShapeType bias_shape({weight_shape[3]});
tim::vx::ShapeType output_shape(
{2, 2, weight_shape[3], input_shape[3]}); //whcn

tim::vx::TensorSpec input_spec(tim::vx::DataType::FLOAT16, input_shape,
tim::vx::TensorAttribute::INPUT);
tim::vx::TensorSpec weight_spec(tim::vx::DataType::FLOAT16, weight_shape,
tim::vx::TensorAttribute::INPUT);
tim::vx::TensorSpec bias_spec(tim::vx::DataType::FLOAT16, bias_shape,
tim::vx::TensorAttribute::CONSTANT);
tim::vx::TensorSpec output_spec(tim::vx::DataType::FLOAT16, output_shape,
tim::vx::TensorAttribute::OUTPUT);

// Input data nchw

std::vector<half_float::half> input_data = {
0.0461_h, 0.4024_h, -0.0115_h, 0.2167_h,
-0.6123_h, 0.5036_h, 0.2310_h, 0.6931_h,
1.0461_h, 1.4024_h, -1.0115_h, 1.2167_h,
-1.6123_h, 1.5036_h, 1.2310_h, 1.6931_h
};

// weight data oihw
std::vector<half_float::half> weight_data = {-1.0_h};

// bias data
std::vector<half_float::half> bias_data = {0.0_h};

std::vector<half_float::half> golden = {
-0.0461_h, 0.0115_h,
-1.0461_h, 1.0115_h,
};

auto input_tensor = graph->CreateTensor(input_spec);
auto weight_tensor = graph->CreateTensor(weight_spec, weight_data.data());
auto bias_tensor = graph->CreateTensor(bias_spec, bias_data.data());
auto output_tensor = graph->CreateTensor(output_spec);

auto padding = tim::vx::PadType::AUTO;
std::array<uint32_t, 2> stride({2, 2});
std::array<uint32_t, 2> dilation({1, 1});
std::array<uint32_t, 2> ksize({1,1});
std::array<uint32_t, 4> conv_pad = {0, 0, 0, 0};

auto conv2d =
graph->CreateOperation<tim::vx::ops::Conv2d>(1, padding, ksize, stride, dilation, conv_pad);
(*conv2d)
.BindInput(input_tensor)
.BindInput(weight_tensor)
// .BindInput(bias_tensor)
.BindOutput(output_tensor);

EXPECT_TRUE(graph->Compile());

input_tensor->CopyDataToTensor(input_data.data());

EXPECT_TRUE(graph->Run());

uint32_t output_size = 1;
for (auto i : output_tensor->GetShape()) {
output_size *= i;
}
std::vector<half_float::half> output(output_size);
EXPECT_TRUE(output_tensor->CopyDataFromTensor(output.data()));
EXPECT_TRUE(ArraysMatch(golden, output, (half_float::half)0.1));
}
Loading