-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathfinetune_joint_fasta.py
640 lines (556 loc) · 24.6 KB
/
finetune_joint_fasta.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
import argparse
import logging
logging.basicConfig(level=logging.INFO)
import os
import torch
import torch.nn.functional as F
import pytorch_lightning as pl
from pytorch_lightning.callbacks.lr_monitor import LearningRateMonitor
from pytorch_lightning.callbacks.model_checkpoint import ModelCheckpoint
from pytorch_lightning.loggers import WandbLogger
from pytorch_lightning.plugins.training_type import DeepSpeedPlugin, DDPPlugin
from openfold.config import model_config
from openfold.data.data_modules import OpenFoldDataModule
from openfold.model.model import AlphaFold
from openfold.model.model_inv import AlphaFoldInverse
from openfold.np import residue_constants
from openfold.utils.argparse import remove_arguments
from openfold.utils.callbacks import EarlyStoppingVerbose
from openfold.utils.exponential_moving_average import ExponentialMovingAverage
from openfold.utils.loss import AlphaFoldLoss, distogram_loss, lddt_ca, compute_drmsd, InverseLoss
from openfold.utils.lr_schedulers import AlphaFoldLRScheduler
from openfold.utils.seed import seed_everything
from openfold.utils.superimposition import superimpose
from openfold.utils.tensor_utils import tensor_tree_map
from openfold.utils.validation_metrics import gdt_ts, gdt_ha
from openfold.utils.zero_to_fp32 import get_fp32_state_dict_from_zero_checkpoint
import debugger
class OpenFoldWrapper(pl.LightningModule):
def __init__(self, config):
super(OpenFoldWrapper, self).__init__()
self.config = config
self.f_model = AlphaFold(config)
self.g_model = AlphaFoldInverse(config)
self.f_loss = AlphaFoldLoss(config.loss)
self.g_loss = InverseLoss(config.loss)
self.f_ema = ExponentialMovingAverage(
model=self.f_model, decay=config.ema.decay
)
self.g_ema = ExponentialMovingAverage(
model=self.g_model, decay=config.ema.decay
)
# self.plddt_regularized = self.config
self.cached_weights = None
def forward(self, batch):
return self.f_model(batch), self.g_model(batch)
def forward_joint(self, batch):
f_outputs = self.f_model(batch)
# we should consider the mask
coords = f_outputs["final_atom_positions"] # [*, N, 37, 3]
n_pos = residue_constants.atom_order["N"]
gt_coords_n = coords[..., n_pos, :].unsqueeze(-2) # [*, N, 1, 3]
ca_pos = residue_constants.atom_order["CA"]
gt_coords_ca = coords[..., ca_pos, :].unsqueeze(-2) # [*, N, 3]
c_pos = residue_constants.atom_order["C"]
gt_coords_c = coords[..., c_pos, :].unsqueeze(-2) # [*, N, 3]
o_pos = residue_constants.atom_order["O"]
gt_coords_o = coords[..., o_pos, :].unsqueeze(-2) # [*, N, 3]
coords_feats = torch.cat((gt_coords_n, gt_coords_ca, gt_coords_c, gt_coords_o), dim=-2)
h_outputs = self.g_model.forward_h(batch, coords_feats)
return f_outputs, h_outputs
def _log(self, loss_breakdown, batch, outputs, train=True):
phase = "train" if train else "val"
for loss_name, indiv_loss in loss_breakdown.items():
self.log(
f"{phase}/{loss_name}",
indiv_loss,
on_step=train, on_epoch=(not train), logger=True,
)
if(train):
self.log(
f"{phase}/{loss_name}_epoch",
indiv_loss,
on_step=False, on_epoch=True, logger=True,
)
with torch.no_grad():
other_metrics = self._compute_validation_metrics(
batch,
outputs,
superimposition_metrics=(not train)
)
for k,v in other_metrics.items():
self.log(
f"{phase}/{k}",
v,
on_step=False, on_epoch=True, logger=True
)
def training_step(self, batch, batch_idx):
if(self.f_ema.device != batch["b"]["aatype"].device):
self.f_ema.to(batch["b"]["aatype"].device)
self.g_ema.to(batch["b"]["aatype"].device)
f_outputs, h_outputs = self.forward_joint(batch["b"])
plddt = f_outputs["plddt"][-1].mean()
plddt_loss = -plddt/100 + 1.0
log_plddt = plddt.detach()
self.log('train/regu_plddt_score', log_plddt, on_step=False, on_epoch=True, prog_bar=False, logger=True, sync_dist=True)
self.log('train/regu_plddt_loss_epoch', plddt_loss, on_step=False, on_epoch=True, prog_bar=False, logger=True, sync_dist=True)
# use fake loss, to avoid non-used parameters
# these parameters will cause backpropagation error during DDP
logits=f_outputs["sm"]["seqs_logits"]
# [8, 1, 256, 21]
distogram = f_outputs["distogram_logits"]
# [1, 256, 256, 64]
logits_loss = logits.sum()
distogram_loss = distogram.sum()
batch_b = tensor_tree_map(lambda t: t[..., -1], batch["b"])
# Compute h loss
logits_h = h_outputs["sm"]["seqs_logits"][-1]
aatype = batch_b["aatype"]
masked_target = aatype.masked_select(batch_b["seq_mask"].to(torch.bool)).view(-1) # Nl
masked_pred_h = logits_h.masked_select(batch_b["seq_mask"].unsqueeze(-1).to(torch.bool)).view(-1, residue_constants.restype_num + 1) # Nl x 21
ce_h = F.cross_entropy(masked_pred_h, masked_target.long())
ppl_h = ce_h.exp()
dummy_loss_h = sum([v.float().sum() for v in h_outputs["sm"].values()]) # calculate other loss (pl distributed training)
# Log it
self.log('train/h_loss', ce_h, on_step=True, on_epoch=False, prog_bar=False, logger=True)
self.log('train/h_PPL', ppl_h, on_step=True, on_epoch=False, prog_bar=True, logger=True)
self.log('train/h_loss_epoch', ce_h, on_step=False, on_epoch=True, prog_bar=False, logger=True, sync_dist=True)
self.log('train/h_PPL_epoch', ppl_h, on_step=False, on_epoch=True, prog_bar=False, logger=True, sync_dist=True)
h_loss = ce_h + 0. * dummy_loss_h + 0. * plddt_loss + 0. * logits_loss + 0. * distogram_loss
return h_loss
def on_before_zero_grad(self, *args, **kwargs):
self.f_ema.update(self.f_model)
self.g_ema.update(self.g_model)
def validation_step(self, batch, batch_idx):
# At the start of validation, load the EMA weights
if(self.cached_weights is None):
# model.state_dict() contains references to model weights rather
# than copies. Therefore, we need to clone them before calling
# load_state_dict().
clone_param = lambda t: t.detach().clone()
self.f_cached_weights = tensor_tree_map(clone_param, self.f_model.state_dict())
self.f_model.load_state_dict(self.f_ema.state_dict()["params"])
self.g_cached_weights = tensor_tree_map(clone_param, self.g_model.state_dict())
self.g_model.load_state_dict(self.g_ema.state_dict()["params"])
# Run the model
f_outputs, g_outputs = self(batch)
_, h_outputs = self.forward_joint(batch)
batch = tensor_tree_map(lambda t: t[..., -1], batch)
# plddt = f_outputs["plddt"][-1].mean()
# self.log('val/regu_plddt_score', plddt, on_step=False, on_epoch=True, prog_bar=True, logger=True, sync_dist=True)
# Compute loss and other metrics
batch["use_clamped_fape"] = 0.
f_loss, f_loss_breakdown = self.f_loss(
f_outputs, batch, _return_breakdown=True
)
self._log(f_loss_breakdown, batch, f_outputs, train=False)
# compute g loss
logits = g_outputs["sm"]["seqs_logits"][-1]
aatype = batch["aatype"]
# only last step computed as ce
masked_pred = logits.masked_select(batch["seq_mask"].unsqueeze(-1).to(torch.bool)).view(-1, residue_constants.restype_num+1) # Nl x 21
masked_target = aatype.masked_select(batch["seq_mask"].to(torch.bool)).view(-1) # Nl
ce = F.cross_entropy(masked_pred, masked_target)
ppl = ce.exp()
logits[..., -1] = -9999 # zero out UNK.
sampled_seqs = logits.argmax(dim=-1) # greedy sampling
masked_sampled_seqs = sampled_seqs.masked_select(batch["seq_mask"].to(torch.bool)).view(-1) # N x Nl
aars = masked_sampled_seqs.eq(masked_target).float().mean()
self.log('val/g_loss', ce, on_step=False, on_epoch=True, prog_bar=False, logger=False, sync_dist=True)
self.log('val/g_PPL', ppl, on_step=False, on_epoch=True, prog_bar=True, logger=True, sync_dist=True) # show
self.log('val/g_AAR', aars, on_step=False, on_epoch=True, prog_bar=True, logger=True, sync_dist=True)
# # Compute h loss
#
logits_h = h_outputs["sm"]["seqs_logits"][-1]
masked_pred_h = logits_h.masked_select(batch["seq_mask"].unsqueeze(-1).to(torch.bool)).view(-1, residue_constants.restype_num + 1) # Nl x 21
ce_h = F.cross_entropy(masked_pred_h, masked_target)
ppl_h = ce_h.exp()
logits_h[..., -1] = -9999 # zero out UNK.
sampled_seqs_h = logits_h.argmax(dim=-1) # greedy sampling
masked_sampled_seqs_h = sampled_seqs_h.masked_select(batch["seq_mask"].to(torch.bool)).view(-1) # N x Nl
aars_h = masked_sampled_seqs_h.eq(masked_target).float().mean()
# Log it
self.log('val/h_loss', ce_h, on_step=False, on_epoch=True, prog_bar=False, logger=False, sync_dist=True)
self.log('val/h_PPL', ppl_h, on_step=False, on_epoch=True, prog_bar=True, logger=True, sync_dist=True) # show
self.log('val/h_AAR', aars_h, on_step=False, on_epoch=True, prog_bar=True, logger=True, sync_dist=True)
# loss = ce + f_loss
# self.log(
# f"val/loss",
# loss,
# on_step=False, on_epoch=True, logger=True, sync_dist=True
# )
def validation_epoch_end(self, _):
# Restore the model weights to normal
self.f_model.load_state_dict(self.f_cached_weights)
self.f_cached_weights = None
self.g_model.load_state_dict(self.g_cached_weights)
self.g_cached_weights = None
def _compute_validation_metrics(self,
batch,
outputs,
superimposition_metrics=False
):
metrics = {}
gt_coords = batch["all_atom_positions"].float() # [*, N, 37, 3]
pred_coords = outputs["final_atom_positions"].float() # [*, N, 37, 3]
all_atom_mask = batch["all_atom_mask"].float() # [*, N, 37]
# This is super janky for superimposition. Fix later
gt_coords_masked = gt_coords * all_atom_mask[..., None] # [*, N, 37, 3]
pred_coords_masked = pred_coords * all_atom_mask[..., None] # [*, N, 37, 3]
ca_pos = residue_constants.atom_order["CA"]
gt_coords_masked_ca = gt_coords_masked[..., ca_pos, :] # [*, N, 3]
pred_coords_masked_ca = pred_coords_masked[..., ca_pos, :] # [*, N, 3]
all_atom_mask_ca = all_atom_mask[..., ca_pos] # [*, N]
lddt_ca_score = lddt_ca(
pred_coords,
gt_coords,
all_atom_mask,
eps=self.config.globals.eps,
per_residue=False,
) # [*]
metrics["lddt_ca"] = lddt_ca_score
drmsd_ca_score = compute_drmsd(
pred_coords_masked_ca,
gt_coords_masked_ca,
mask=all_atom_mask_ca,
) # [*]
metrics["drmsd_ca"] = drmsd_ca_score
if(superimposition_metrics):
superimposed_pred, _ = superimpose(
gt_coords_masked_ca, pred_coords_masked_ca
) # [*, N, 3]
gdt_ts_score = gdt_ts(
superimposed_pred, gt_coords_masked_ca, all_atom_mask_ca
)
gdt_ha_score = gdt_ha(
superimposed_pred, gt_coords_masked_ca, all_atom_mask_ca
)
metrics["gdt_ts"] = gdt_ts_score
metrics["gdt_ha"] = gdt_ha_score
return metrics
def configure_optimizers(self) -> torch.optim.Adam:
optim_config = self.config.optimizer
scheduler_config = self.config.scheduler
optimizer = torch.optim.Adam(
[{"params":self.f_model.parameters()},{"params":self.g_model.parameters()}],
lr=optim_config.lr,
eps=optim_config.eps,
weight_decay=1e-6,
)
lr_scheduler = AlphaFoldLRScheduler(
optimizer,
max_lr=optim_config.lr,
**scheduler_config,
)
return {
"optimizer": optimizer,
"lr_scheduler": {
"scheduler": lr_scheduler,
"interval": "step",
"frequency": 1,
"name": "AlphaFoldLRScheduler",
}
}
def on_load_checkpoint(self, checkpoint):
self.f_ema.load_state_dict(checkpoint["f_ema"])
self.g_ema.load_state_dict(checkpoint["g_ema"])
def on_save_checkpoint(self, checkpoint):
checkpoint["f_ema"] = self.f_ema.state_dict()
checkpoint["g_ema"] = self.g_ema.state_dict()
def main(args):
if(args.seed is not None):
seed_everything(args.seed)
logging.info(f"args.is_antibody is {args.is_antibody}")
config = model_config(
name=args.config_preset,
yaml_config_preset=args.yaml_config_preset,
train=True,
low_prec=(args.precision == 16),
)
model_module = OpenFoldWrapper(config)
# if(args.resume_from_ckpt and args.resume_model_weights_only):
# sd = get_fp32_state_dict_from_zero_checkpoint(args.resume_from_ckpt)
# sd = {k[len("module."):]:v for k,v in sd.items()}
# model_module.load_state_dict(sd)
# logging.info("Successfully loaded model weights...")
logging.info(f"args.resume_model_weights_only is {args.resume_model_weights_only}")
logging.info(f"args.resume_from_ckpt_f is {args.resume_from_ckpt_f}")
logging.info(f"args.resume_from_ckpt_g is {args.resume_from_ckpt_g}")
if(args.resume_model_weights_only):
assert (args.resume_from_ckpt_f is not None) or (args.resume_from_ckpt_g is not None)
if args.resume_from_ckpt_f is not None:
sd = torch.load(args.resume_from_ckpt_f, map_location=torch.device('cpu'))
logging.info("printing loaded state dict for model_f")
stat_dict_f = {k[len("model."):]:v for k,v in sd["state_dict"].items()}
ema_f = {k:v for k,v in sd["ema"].items()}
model_module.f_model.load_state_dict(stat_dict_f)
model_module.f_ema.load_state_dict(ema_f)
logging.info("Successfully loaded model_f weights...")
if args.resume_from_ckpt_g is not None:
sd = torch.load(args.resume_from_ckpt_g, map_location=torch.device('cpu'))
logging.info("printing loaded state dict for model_f")
stat_dict_g = {k[len("model."):]:v for k,v in sd["state_dict"].items()}
ema_g = {k:v for k,v in sd["ema"].items()}
model_module.g_model.load_state_dict(stat_dict_g)
model_module.g_ema.load_state_dict(ema_g)
logging.info("Successfully loaded model_g weights...")
# parallel_data_module = OpenFoldDataModule(
# config=config.data,
# batch_seed=args.seed,
# **vars(args)
# )
# parallel_data_module.prepare_data()
# parallel_data_module.setup()
# process fasta file
sequence_data_module = OpenFoldDataModule(
config=config.data,
batch_seed=args.seed,
train_data_dir=args.fasta_dir,
train_epoch_len=args.train_epoch_len,
is_antibody=args.is_antibody,
)
sequence_data_module.prepare_data()
sequence_data_module.setup()
callbacks = []
if(args.checkpoint_every_epoch):
mc = ModelCheckpoint(
filename="epoch{epoch:02d}-step{step}-val_loss={val/loss:.3f}",
auto_insert_metric_name=False,
monitor="val/loss",
mode="min",
every_n_epochs=1,
save_last=False,
save_top_k=30,
)
callbacks.append(mc)
if(args.early_stopping):
es = EarlyStoppingVerbose(
monitor="val/loss",
min_delta=args.min_delta,
patience=args.patience,
verbose=False,
mode="min",
check_finite=True,
strict=True,
)
callbacks.append(es)
if(args.log_lr):
lr_monitor = LearningRateMonitor(logging_interval="step")
callbacks.append(lr_monitor)
loggers = []
if(args.wandb):
# https://docs.wandb.ai/ref/python/init
wdb_logger = WandbLogger(
name=args.experiment_name,
save_dir=args.output_dir,
version=args.wandb_version,
project=args.wandb_project,
offline=True,
**{"entity": args.wandb_entity}
)
loggers.append(wdb_logger)
wandb_log_dir = os.path.join(args.output_dir, "wandb")
if not os.path.exists(wandb_log_dir):
logging.info(f"generating directory for wandb logging located at {wandb_log_dir}")
os.makedirs(wandb_log_dir, exist_ok=True)
if(args.deepspeed_config_path is not None):
strategy = DeepSpeedPlugin(
config=args.deepspeed_config_path,
)
if(args.wandb):
wdb_logger.experiment.save(args.deepspeed_config_path)
wdb_logger.experiment.save("openfold/config.py")
if args.yaml_config_preset is not None:
wdb_logger.experiment.save(args.yaml_config_preset)
elif (args.gpus is not None and args.gpus > 1) or args.num_nodes > 1:
strategy = DDPPlugin(find_unused_parameters=False)
else:
strategy = None
trainer = pl.Trainer.from_argparse_args(
args,
default_root_dir=args.output_dir,
strategy=strategy,
callbacks=callbacks,
logger=loggers,
)
if(args.resume_model_weights_only):
ckpt_path = None
else:
ckpt_path = args.resume_from_ckpt
# multi data module training
train_dataloader={"a": parallel_data_module.train_dataloader(), "b": sequence_data_module.train_dataloader()}
trainer.fit(
model_module,
train_dataloaders=train_dataloader,
val_dataloaders=parallel_data_module.val_dataloader(),
ckpt_path=ckpt_path,
)
def bool_type(bool_str: str):
bool_str_lower = bool_str.lower()
if bool_str_lower in ('false', 'f', 'no', 'n', '0'):
return False
elif bool_str_lower in ('true', 't', 'yes', 'y', '1'):
return True
else:
raise ValueError(f'Cannot interpret {bool_str} as bool')
if __name__ == "__main__":
os.environ["CUDA_LAUNCH_BLOCKING"]="1"
parser = argparse.ArgumentParser()
parser.add_argument(
"train_data_dir", type=str, default=None,
help="Directory containing training pdb files"
)
parser.add_argument(
"--fasta_dir", type=str, default='None',
help="Directory containing training fasta files"
)
parser.add_argument(
"--output_dir", type=str, default='invfold_outputs',
help=(
"Directory in which to output checkpoints, logs, etc. Ignored "
"if not on rank 0"
)
)
parser.add_argument(
"--is_antibody", type=bool, default=False,
help="training on antibody or not"
)
parser.add_argument(
"--val_data_dir", type=str, default=None,
help="Directory containing validation mmCIF files"
)
parser.add_argument(
"--seed", type=int, default=None,
help="Random seed"
)
parser.add_argument(
"--deepspeed_config_path", type=str, default=None,
help="Path to DeepSpeed config. If not provided, DeepSpeed is disabled"
)
parser.add_argument(
"--early_stopping", type=bool_type, default=False,
help="Whether to stop training when validation loss fails to decrease"
)
parser.add_argument(
"--min_delta", type=float, default=0,
help=(
"The smallest decrease in validation loss that counts as an "
"improvement for the purposes of early stopping"
)
)
parser.add_argument(
"--patience", type=int, default=3,
help="Early stopping patience"
)
parser.add_argument(
"--resume_from_ckpt", type=str, default=None,
help="Path to a model checkpoint from which to restore training state"
)
parser.add_argument(
"--resume_from_ckpt_f", type=str, default=None,
help="Path to a model checkpoint from which to restore model state of folding model"
)
parser.add_argument(
"--resume_from_ckpt_g", type=str, default=None,
help="Path to a model checkpoint from which to restore model state of inverse folding model"
)
parser.add_argument(
"--resume_model_weights_only", type=bool_type, default=False,
help="Whether to load just model weights as opposed to training state"
)
parser.add_argument(
"--train_epoch_len", type=int, default=None,
help=(
"The virtual length of each training epoch. Stochastic filtering "
"of training data means that training datasets have no "
"well-defined length. This virtual length affects frequency of "
"validation & checkpointing (by default, one of each per epoch)."
"If set to None, use the length of the dataset as epoch_len."
)
)
parser.add_argument(
"--checkpoint_every_epoch", type=bool_type, default=True,
help="Whether to checkpoint at the end of every training epoch"
)
parser.add_argument(
"--log_lr", type=bool_type, default=True,
help="Whether to log the actual learning rate"
)
parser.add_argument(
"--wandb", type=bool_type, default=False,
help="Whether to log metrics to Weights & Biases"
)
parser.add_argument(
"--wandb_entity", type=str, default=None,
help="wandb username or team name to which runs are attributed"
)
parser.add_argument(
"--wandb_version", type=str, default=None,
help="Sets the version, mainly used to resume a previous run."
)
parser.add_argument(
"--wandb_project", type=str, default=None,
help="Name of the wandb project to which this run will belong"
)
parser.add_argument(
"--experiment_name", type=str, default=None,
help="Name of the current experiment. Used for wandb logging"
)
parser.add_argument(
"--config_preset", type=str, default=None,
help=(
"Config setting. Choose e.g. 'initial_training', 'finetuning', "
"'model_1', etc. By default, the actual values in the config are "
"used."
)
)
parser.add_argument(
"--yaml_config_preset", type=str, default=None,
help=(
"A path to a yaml file that contains the updated config setting. "
"If it is set, the config_preset will be overwrriten as the basename "
"of the yaml_config_preset."
)
)
parser = pl.Trainer.add_argparse_args(parser)
# Disable the initial validation pass
parser.set_defaults(
num_sanity_val_steps=0,
)
# Remove some buggy/redundant arguments introduced by the Trainer
remove_arguments(
parser,
[
"--accelerator",
"--resume_from_checkpoint",
"--reload_dataloaders_every_epoch",
"--reload_dataloaders_every_n_epochs",
]
)
args = parser.parse_args()
if(args.seed is None and
((args.gpus is not None and args.gpus > 1) or
(args.num_nodes is not None and args.num_nodes > 1))):
raise ValueError("For distributed training, --seed must be specified")
if(args.config_preset is None and args.yaml_config_preset is None):
raise ValueError(
"Either --config_preset or --yaml_config_preset should be specified."
)
if(args.yaml_config_preset is not None):
if not os.path.exists(args.yaml_config_preset):
raise FileNotFoundError(f"{os.path.abspath(args.yaml_config_preset)}")
args.config_preset = os.path.splitext(
os.path.basename(args.yaml_config_preset)
)[0]
logging.info(f"the config_preset is set as {args.config_preset} by yaml_config_preset.")
# process wandb args
if(args.wandb):
if args.wandb_version is not None:
args.wandb_version = f"{args.config_preset}-{args.wandb_version}"
if args.experiment_name is None:
args.experiment_name = args.wandb_version
logging.info(f"args train data dir is {args.train_data_dir}")
logging.info(f"args yaml config is {args.yaml_config_preset}")
# This re-applies the training-time filters at the beginning of every epoch
args.reload_dataloaders_every_n_epochs = 1
main(args)