请按照此要求设置环境。通常,您可能需要运行以下命令:
conda create -n CAL python=3.8
conda activate CAL
conda install pytorch cudatoolkit=11.6 -c pytorch
conda install opencv scikit-learn networkx pandas tqdm matplotlib seaborn
pip install torch==1.12.0
pip install torch-scatter==2.0.9 -f https://pytorch-geometric.com/whl/torch-1.12.0+cu116.html
pip install torch-sparse==0.6.14 -f https://pytorch-geometric.com/whl/torch-1.12.0+cu116.html
pip install torch-cluster==1.6.0 -f https://pytorch-geometric.com/whl/torch-1.12.0+cu116.html
pip install torch-spline-conv==1.2.1 -f https://pytorch-geometric.com/whl/torch-1.12.0+cu116.html
pip install torch-geometric==2.0.4
三相流动设施数据:克兰菲尔德大学的三相流动设施(TFF)设计用于控制加压系统,并测量水流量、油流量和空气流量。该设施中共有24个传感器,用于测量系统不同关键位置的压力、流速、密度和温度。
下载地址:
对模型进行训练和测试,执行以下指令:
python main_real.py --model CausalGAT --dataset TFF
我们将文中给出的模型与其他基线模型进行对比,在三相流动设施数据集上,我们的模型CAL表现出更好的分类性能,测试准确率更高,具体如下表:
GAT | PKT-MCNN | IAGNN | CAL | |
---|---|---|---|---|
Accuracy | 0.8692 | 0.8805 | 0.9192 | 0.9641 |
因此,当我们在该三相流动设施上使用我们提出的模型进行故障诊断,能够更好地识别出故障的发生及其故障类型,尽可能减小对生产造成的损失,最终完成了实验目标。