forked from WildMeOrg/wbia-plugin-tbd
-
-
Notifications
You must be signed in to change notification settings - Fork 5
Commit
This commit does not belong to any branch on this repository, and may belong to a fork outside of the repository.
* initial commit * visualization modifications * Refactors submodules * Modify gitignore * Diasbles strict model loading * Adds examples * Updates model tag * Notebook checkpoint * Updates readme * Updates Readme --------- Co-authored-by: LashaO <[email protected]>
- Loading branch information
Showing
34 changed files
with
2,482 additions
and
558 deletions.
There are no files selected for viewing
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
Original file line number | Diff line number | Diff line change |
---|---|---|
@@ -0,0 +1,104 @@ | ||
|
||
# WILDBOOK IA - MIEW-ID Plugin | ||
|
||
A plugin for matching and interpreting embeddings for wildlife identification. | ||
|
||
|
||
## Setup | ||
|
||
` pip install -r requirements.txt ` | ||
|
||
Optionally, these environment variables must be set to enable Weights and Biases logging | ||
capability: | ||
``` | ||
WANDB_API_KEY={your_wanb_api_key} | ||
WANDB_MODE={'online'/'offline'} | ||
``` | ||
|
||
## Training | ||
You can create a new line in a code block in markdown by using two spaces at the end of the line followed by a line break. Here's an example: | ||
|
||
``` | ||
cd wbia_miew_id | ||
python train.py | ||
``` | ||
|
||
## Data files | ||
|
||
The data is expected to be in the coco JSON format. Paths to data files and the image directory are defined in the config YAML file. | ||
|
||
The beluga data can be downloaded from [here](https://cthulhu.dyn.wildme.io/public/datasets/beluga-model-data.zip). | ||
|
||
## Configuration file | ||
|
||
A config file path can be set by: | ||
`python train.py --config {path_to_config}` | ||
|
||
- `exp_name`: Name of the experiment | ||
- `project_name`: Name of the project | ||
- `checkpoint_dir`: Directory for storing training checkpoints | ||
- `comment`: Comment text for the experiment | ||
- `viewpoint_list`: List of viewpoint values to keep for all subsets. | ||
- `data`: Subfield for data-related settings | ||
- `images_dir`: Directory containing the all of the dataset images | ||
- `use_full_image_path`: Overrides the images_dir for path construction and instead uses an absolute path that should be defined in the `file_path` file path under the `images` entries for each entry in the COCO JSON. In such a case, `images_dir` can be set to `null` | ||
- `crop_bbox`: Whether to use the `bbox` field of JSON annotations to crop the images. The crops will also be adjusted for rotation if the `theta` field is present for the annotations | ||
- `preprocess_images` pre-applies cropping and resizing and caches the images for training | ||
- `train`: Data parameters regarding the train set used in train.py | ||
- `anno_path`: Path to the JSON file containing the annotations | ||
- `n_filter_min`: Minimum number of samples per name (individual) to keep that individual in the set. Names under the threshold will be discarded | ||
- `n_subsample_max`: Maximum number of samples per name to keep for the training set. Annotations for names over the threshold will be randomly subsampled once at the start of training | ||
- `val`: Data parameters regarding the validation set used in train.py | ||
- `anno_path` | ||
- `n_filter_min` | ||
- `n_subsample_max` | ||
- `test`: Data parameters regarding the test set used in test.py | ||
- `anno_path` | ||
- `n_filter_min` | ||
- `n_subsample_max` | ||
- `checkpoint_path`: Path to model checkpoint to test | ||
- `eval_groups`: Attributes for which to group the testing sets. For example, the value of `['viewpoint']` will create subsets of the test set for each unique value of the viewpoint and run one-vs-all evaluation for each subset separately. The value can be a list - `[['species', 'viewpoint']]` will run evaluation separately for each species+viewpoint combination. `['species', 'viewpoint']` will run grouped eval for each species, and then for each viewpoint. The corresponding fields to be grouped should be present under `annotation` entries in the COCO file. Can be left as `null` to do eval for the full test set. | ||
- `name_keys`: List of keys used for defining a unique name (individual). Fields from multiple keys will be combined to form the final representation of a name. A common use-case is `name_keys: ['name', 'viewpoint']` for treating each name + viewpoint combination as a unique individual | ||
- `image_size`: | ||
- Image height to resize to | ||
- Image width to resize to | ||
- `engine`: Subfields for engine-related settings | ||
- `num_workers`: Number of workers for data loading (default: 0) | ||
- `train_batch_size`: Batch size for training | ||
- `valid_batch_size`: Batch size for validation | ||
- `epochs`: Number of training epochs | ||
- `seed`: Random seed for reproducibility | ||
- `device`: Device to be used for training | ||
- `use_wandb`: Whether to use Weights and Biases for logging | ||
- `use_swa`: Whether to use SWA during training | ||
- `scheduler_params`: Subfields for learning rate scheduler parameters | ||
- `lr_start`: Initial learning rate | ||
- `lr_max`: Maximum learning rate | ||
- `lr_min`: Minimum learning rate | ||
- `lr_ramp_ep`: Number of epochs to ramp up the learning rate | ||
- `lr_sus_ep`: Number of epochs to sustain the maximum learning rate | ||
- `lr_decay`: Rate of learning rate decay per epoch | ||
- `model_params`: Dictionary containing model-related settings | ||
- `model_name`: Name of the model backbone architecture | ||
- `use_fc`: Whether to use a fully connected layer after backbone extraction | ||
- `fc_dim`: Dimension of the fully connected layer | ||
- `dropout`: Dropout rate | ||
- `loss_module`: Loss function module | ||
- `s`: Scaling factor for the loss function | ||
- `margin`: Margin for the loss function | ||
- `pretrained`: Whether to use a pretrained model backbone | ||
- `n_classes`: Number of classes in the training dataset, used for loading checkpoint | ||
- `swa_params`: Subfields for SWA training | ||
- `swa_lr`: SWA learning rate | ||
- `swa_start`: Epoch number to begin SWA training | ||
- `test`: Subfields for plugin-related settings | ||
- `fliplr`: Whether to perform horizontal flipping during testing | ||
- `fliplr_view`: List of viewpoints to apply horizontal flipping | ||
- `batch_size`: Batch size for plugin inference | ||
|
||
## Testing | ||
`python test.py --config {path_to_config} --visualize` | ||
|
||
The `--visualize` flag is optional and will produce top 5 match results for each individual in the test set, along with gradcam visualizations. | ||
|
||
The parameters for the test set are defined under `data.test` of the config.yaml file. |
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
Original file line number | Diff line number | Diff line change |
---|---|---|
@@ -0,0 +1,6 @@ | ||
{ | ||
"cells": [], | ||
"metadata": {}, | ||
"nbformat": 4, | ||
"nbformat_minor": 5 | ||
} |
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
Original file line number | Diff line number | Diff line change |
---|---|---|
@@ -0,0 +1,33 @@ | ||
{ | ||
"cells": [ | ||
{ | ||
"cell_type": "code", | ||
"execution_count": null, | ||
"id": "92a81cba-8dcd-4396-908d-79e2e21f2905", | ||
"metadata": {}, | ||
"outputs": [], | ||
"source": [] | ||
} | ||
], | ||
"metadata": { | ||
"kernelspec": { | ||
"display_name": "Python 3 (ipykernel)", | ||
"language": "python", | ||
"name": "python3" | ||
}, | ||
"language_info": { | ||
"codemirror_mode": { | ||
"name": "ipython", | ||
"version": 3 | ||
}, | ||
"file_extension": ".py", | ||
"mimetype": "text/x-python", | ||
"name": "python", | ||
"nbconvert_exporter": "python", | ||
"pygments_lexer": "ipython3", | ||
"version": "3.10.13" | ||
} | ||
}, | ||
"nbformat": 4, | ||
"nbformat_minor": 5 | ||
} |
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
Original file line number | Diff line number | Diff line change |
---|---|---|
@@ -0,0 +1,7 @@ | ||
from setuptools import setup, find_packages | ||
|
||
setup( | ||
name='wbia_miew_id', | ||
version='0.1.1', | ||
packages=find_packages(), | ||
) |
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
Original file line number | Diff line number | Diff line change |
---|---|---|
@@ -1,4 +1 @@ | ||
from wbia_miew_id import _plugin # NOQA | ||
|
||
|
||
__version__ = '0.0.0' |
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
Oops, something went wrong.