[Report] [Demo Video] [Slides]
Please install survae first
pip install git+https://github.com/didriknielsen/survae_flows.git
# the install corresponding environment
conda create -n colorvae --file requirements.txt
-
COCO train2017 & val2017 dataset Please extract to
./coco
folder. -
Tiny imagenet provided on Kaggle
kaggle datasets download -d akash2sharma/tiny-imagenet
Please delete the duplicated folder in the zip file before training
python predict.py --resume models/dil256-vae_model.pt --img_path par37351-teaser-story-big.jpg
python main.py --img_size 256 --dataset COCO --lr 0.001 --exp_name dil256 --batch_size 32
- For image output
python predict.py --img_size 256 --resume models/dil256-vae_model.pt --img_path coco/val2017 --sample_num 8 --separate
- For image output with VAE hint
python predict.py --img_size 256 --resume models/dil256-vae_model.pt --img_path coco/val2017 --sample_num 8 --separate --vae_hint
- For PNSR score
python predict.py --img_size 256 --resume models/dil256-vae_model.pt --img_path coco/val2017 --sample_num 8 --psnr
On COCO val2017 dataset
ColorVAE | No VAE | ECCV16 | SIGGRAPH17 | w/o semantic pre-train | w/ VAE hint |
---|---|---|---|---|---|
26.0008 | 24.6531 | 21.9863 | 25.6168 | 21.5979 | 27.0091 |
No VAE | ECCV16 | SIGGRAPH17 | w/ VAE hint |
---|---|---|---|
3.555 | 3.188 | 3.546 | 3.691 |