Skip to content

XYPB/ColorVAE

Repository files navigation

EECS442 21WN Final Project: Color-VAE

[Report] [Demo Video] [Slides]

sample ColorVAE

Environment setup

Please install survae first

pip install git+https://github.com/didriknielsen/survae_flows.git
# the install corresponding environment
conda create -n colorvae --file requirements.txt

Downlaod Dataset

  1. COCO train2017 & val2017 dataset Please extract to ./coco folder.

  2. Tiny imagenet provided on Kaggle

    kaggle datasets download -d akash2sharma/tiny-imagenet

    Please delete the duplicated folder in the zip file before training

Download Pre-trained Model

[Google Drive]

Demo

python predict.py --resume models/dil256-vae_model.pt --img_path par37351-teaser-story-big.jpg

Train

python main.py --img_size 256  --dataset COCO --lr 0.001 --exp_name dil256 --batch_size 32

Prediction

  1. For image output
python predict.py --img_size 256 --resume models/dil256-vae_model.pt --img_path coco/val2017 --sample_num 8 --separate
  1. For image output with VAE hint
python predict.py --img_size 256 --resume models/dil256-vae_model.pt --img_path coco/val2017 --sample_num 8 --separate --vae_hint
  1. For PNSR score
python predict.py --img_size 256 --resume models/dil256-vae_model.pt --img_path coco/val2017 --sample_num 8 --psnr

Performance

On COCO val2017 dataset

PSNR

ColorVAE No VAE ECCV16 SIGGRAPH17 w/o semantic pre-train w/ VAE hint
26.0008 24.6531 21.9863 25.6168 21.5979 27.0091

Rating

No VAE ECCV16 SIGGRAPH17 w/ VAE hint
3.555 3.188 3.546 3.691

About

No description, website, or topics provided.

Resources

Stars

Watchers

Forks

Releases

No releases published

Packages

No packages published

Languages