Skip to content
New issue

Have a question about this project? Sign up for a free GitHub account to open an issue and contact its maintainers and the community.

By clicking “Sign up for GitHub”, you agree to our terms of service and privacy statement. We’ll occasionally send you account related emails.

Already on GitHub? Sign in to your account

[MLIR] [TOSA]: fix input index of tosa.pad folding. Improve lit tests. #77

Merged
merged 1 commit into from
Sep 8, 2023
Merged
Show file tree
Hide file tree
Changes from all commits
Commits
File filter

Filter by extension

Filter by extension

Conversations
Failed to load comments.
Loading
Jump to
Jump to file
Failed to load files.
Loading
Diff view
Diff view
15 changes: 12 additions & 3 deletions mlir/lib/Dialect/Tosa/Transforms/TosaFolders.cpp
Original file line number Diff line number Diff line change
Expand Up @@ -1318,14 +1318,23 @@ DenseElementsAttr padType(ShapedType inputType, ElementsAttr inputValues,
for (size_t outIndex = 0, e = outputValues.size(); outIndex < e; ++outIndex) {
auto indexInTarget = offsetToIndex(outputShape, outIndex);

llvm::for_each(llvm::enumerate(indexInTarget), [&](const auto &dimInfo) {
auto index = dimInfo.index();
auto i = dimInfo.value() - paddingVals[index * 2];

// Update index so it points to the right position
// when this is not a padConst value.
indexInTarget[index] = i;
});

bool isPad =
llvm::any_of(llvm::enumerate(indexInTarget), [&](const auto &dimInfo) {
mgehre-amd marked this conversation as resolved.
Show resolved Hide resolved
auto index = dimInfo.index();
auto i = dimInfo.value() - paddingVals[index * 2];
return static_cast<bool>(i < 0 || i >= inputShape[index]);
auto value = dimInfo.value();
return static_cast<bool>(value < 0 || value >= inputShape[index]);
});

auto inputIndexOffset = indexToOffset(outputShape, indexInTarget);
auto inputIndexOffset = indexToOffset(inputShape, indexInTarget);
outputValues[outIndex] = isPad ? padConst : values[inputIndexOffset];
}
return DenseElementsAttr::get(outputType,
Expand Down
68 changes: 34 additions & 34 deletions mlir/test/Dialect/Tosa/constant-pad.mlir
Original file line number Diff line number Diff line change
Expand Up @@ -14,8 +14,8 @@ func.func @pad_bool() -> (tensor<5x5xi1>) {

// CHECK-LABEL: @pad_int8
func.func @pad_int8() -> (tensor<5x5xi8>) {
// CHECK: "tosa.const"() <{value = dense<{{\[\[}}1, 1, 1, 1, 1], [1, 2, 2, 1, 1], [1, 2, 2, 1, 1], [1, 1, 1, 1, 1], [1, 1, 1, 1, 1]]>
%0 = "tosa.const"() {value = dense<2> : tensor<2x2xi8>} : () -> tensor<2x2xi8>
// CHECK: "tosa.const"() <{value = dense<{{\[\[}}1, 1, 1, 1, 1], [1, 3, 4, 1, 1], [1, 5, 6, 1, 1], [1, 1, 1, 1, 1], [1, 1, 1, 1, 1]]>
%0 = "tosa.const"() {value = dense<[[3, 4], [5, 6]]> : tensor<2x2xi8>} : () -> tensor<2x2xi8>
%1 = "tosa.const"() {value = dense<[[1, 2], [1, 2]]> : tensor<2x2xi64>} : () -> tensor<2x2xi64>
%2 = "tosa.const"() {value = dense<1> : tensor<i8>} : () -> tensor<i8>
%3 = "tosa.pad"(%0, %1, %2) : (tensor<2x2xi8>, tensor<2x2xi64>, tensor<i8>) -> tensor<5x5xi8>
Expand All @@ -24,8 +24,8 @@ func.func @pad_int8() -> (tensor<5x5xi8>) {

// CHECK-LABEL: @pad_int32
func.func @pad_int32() -> (tensor<5x5xi32>) {
// CHECK: "tosa.const"() <{value = dense<{{\[\[}}1, 1, 1, 1, 1], [1, 2, 2, 1, 1], [1, 2, 2, 1, 1], [1, 1, 1, 1, 1], [1, 1, 1, 1, 1]]>
%0 = "tosa.const"() {value = dense<2> : tensor<2x2xi32>} : () -> tensor<2x2xi32>
// CHECK: "tosa.const"() <{value = dense<{{\[\[}}1, 1, 1, 1, 1], [1, 3, 4, 1, 1], [1, 5, 6, 1, 1], [1, 1, 1, 1, 1], [1, 1, 1, 1, 1]]>
%0 = "tosa.const"() {value = dense<[[3, 4], [5, 6]]> : tensor<2x2xi32>} : () -> tensor<2x2xi32>
%1 = "tosa.const"() {value = dense<[[1, 2], [1, 2]]> : tensor<2x2xi64>} : () -> tensor<2x2xi64>
%2 = "tosa.const"() {value = dense<1> : tensor<i32>} : () -> tensor<i32>
%3 = "tosa.pad"(%0, %1, %2) : (tensor<2x2xi32>, tensor<2x2xi64>, tensor<i32>) -> tensor<5x5xi32>
Expand All @@ -34,8 +34,8 @@ func.func @pad_int32() -> (tensor<5x5xi32>) {

// CHECK-LABEL: @pad_int32_default_value
func.func @pad_int32_default_value() -> (tensor<5x5xi32>) {
// CHECK: "tosa.const"() <{value = dense<{{\[\[}}0, 0, 0, 0, 0], [0, 2, 2, 0, 0], [0, 2, 2, 0, 0], [0, 0, 0, 0, 0], [0, 0, 0, 0, 0]]>
%0 = "tosa.const"() {value = dense<2> : tensor<2x2xi32>} : () -> tensor<2x2xi32>
// CHECK: "tosa.const"() <{value = dense<{{\[\[}}0, 0, 0, 0, 0], [0, 3, 4, 0, 0], [0, 5, 6, 0, 0], [0, 0, 0, 0, 0], [0, 0, 0, 0, 0]]>
%0 = "tosa.const"() {value = dense<[[3, 4], [5, 6]]> : tensor<2x2xi32>} : () -> tensor<2x2xi32>
%1 = "tosa.const"() {value = dense<[[1, 2], [1, 2]]> : tensor<2x2xi64>} : () -> tensor<2x2xi64>
%2 = "tosa.pad"(%0, %1) : (tensor<2x2xi32>, tensor<2x2xi64>) -> tensor<5x5xi32>
return %2 : tensor<5x5xi32>
Expand All @@ -44,14 +44,14 @@ func.func @pad_int32_default_value() -> (tensor<5x5xi32>) {
// CHECK-LABEL: @pad_bfloat16
func.func @pad_bfloat16() -> (tensor<5x5xbf16>) {
// CHECK: "tosa.const"()
// CHECK-SAME: {{\[\[}}2.000000e+00, 2.000000e+00, 2.000000e+00, 2.000000e+00, 2.000000e+00],
// CHECK-SAME: [2.000000e+00, 1.000000e+00, 1.000000e+00, 2.000000e+00, 2.000000e+00],
// CHECK-SAME: [2.000000e+00, 1.000000e+00, 1.000000e+00, 2.000000e+00, 2.000000e+00],
// CHECK-SAME: [2.000000e+00, 2.000000e+00, 2.000000e+00, 2.000000e+00, 2.000000e+00],
// CHECK-SAME: [2.000000e+00, 2.000000e+00, 2.000000e+00, 2.000000e+00, 2.000000e+00]]>
%0 = "tosa.const"() {value = dense<1.0> : tensor<2x2xbf16>} : () -> tensor<2x2xbf16>
// CHECK-SAME: {{\[\[}}-1.000000e+00, -1.000000e+00, -1.000000e+00, -1.000000e+00, -1.000000e+00],
// CHECK-SAME: [-1.000000e+00, 1.000000e+00, 2.000000e+00, -1.000000e+00, -1.000000e+00],
// CHECK-SAME: [-1.000000e+00, 3.000000e+00, 4.000000e+00, -1.000000e+00, -1.000000e+00],
// CHECK-SAME: [-1.000000e+00, -1.000000e+00, -1.000000e+00, -1.000000e+00, -1.000000e+00],
// CHECK-SAME: [-1.000000e+00, -1.000000e+00, -1.000000e+00, -1.000000e+00, -1.000000e+00]]>
%0 = "tosa.const"() {value = dense<[[1.0, 2.0], [3.0, 4.0]]> : tensor<2x2xbf16>} : () -> tensor<2x2xbf16>
%1 = "tosa.const"() {value = dense<[[1, 2], [1, 2]]> : tensor<2x2xi64>} : () -> tensor<2x2xi64>
%2 = "tosa.const"() {value = dense<2.0> : tensor<bf16>} : () -> tensor<bf16>
%2 = "tosa.const"() {value = dense<-1.0> : tensor<bf16>} : () -> tensor<bf16>
%3 = "tosa.pad"(%0, %1, %2) : (tensor<2x2xbf16>, tensor<2x2xi64>, tensor<bf16>) -> tensor<5x5xbf16>
return %3 : tensor<5x5xbf16>
}
Expand All @@ -60,11 +60,11 @@ func.func @pad_bfloat16() -> (tensor<5x5xbf16>) {
func.func @pad_bfloat16_default_value() -> (tensor<5x5xbf16>) {
// CHECK: "tosa.const"()
// CHECK-SAME: {{\[\[}}0.000000e+00, 0.000000e+00, 0.000000e+00, 0.000000e+00, 0.000000e+00],
// CHECK-SAME: [0.000000e+00, 1.000000e+00, 1.000000e+00, 0.000000e+00, 0.000000e+00],
// CHECK-SAME: [0.000000e+00, 1.000000e+00, 1.000000e+00, 0.000000e+00, 0.000000e+00],
// CHECK-SAME: [0.000000e+00, 1.000000e+00, 2.000000e+00, 0.000000e+00, 0.000000e+00],
// CHECK-SAME: [0.000000e+00, 3.000000e+00, 4.000000e+00, 0.000000e+00, 0.000000e+00],
// CHECK-SAME: [0.000000e+00, 0.000000e+00, 0.000000e+00, 0.000000e+00, 0.000000e+00],
// CHECK-SAME: [0.000000e+00, 0.000000e+00, 0.000000e+00, 0.000000e+00, 0.000000e+00]]>
%0 = "tosa.const"() {value = dense<1.0> : tensor<2x2xbf16>} : () -> tensor<2x2xbf16>
// CHECK-SAME: [0.000000e+00, 0.000000e+00, 0.000000e+00, 0.000000e+00, 0.000000e+00]]
%0 = "tosa.const"() {value = dense<[[1.0, 2.0], [3.0, 4.0]]> : tensor<2x2xbf16>} : () -> tensor<2x2xbf16>
%1 = "tosa.const"() {value = dense<[[1, 2], [1, 2]]> : tensor<2x2xi64>} : () -> tensor<2x2xi64>
%2 = "tosa.pad"(%0, %1) : (tensor<2x2xbf16>, tensor<2x2xi64>) -> tensor<5x5xbf16>
return %2 : tensor<5x5xbf16>
Expand All @@ -73,35 +73,35 @@ func.func @pad_bfloat16_default_value() -> (tensor<5x5xbf16>) {
// CHECK-LABEL: @pad_f32_3d
func.func @pad_f32_3d() -> (tensor<3x3x4xf32>) {
// CHECK: "tosa.const"()
// CHECK-SAME: {{\[\[}}[1.000000e+00, 1.000000e+00, 1.000000e+00, 1.000000e+00],
// CHECK-SAME: [1.000000e+00, 1.000000e+00, 1.000000e+00, 1.000000e+00],
// CHECK-SAME: [1.000000e+00, 1.000000e+00, 1.000000e+00, 1.000000e+00]],
// CHECK-SAME: {{\[\[}}1.000000e+00, 2.000000e+00, 2.000000e+00, 1.000000e+00],
// CHECK-SAME: [1.000000e+00, 2.000000e+00, 2.000000e+00, 1.000000e+00],
// CHECK-SAME: [1.000000e+00, 1.000000e+00, 1.000000e+00, 1.000000e+00]],
// CHECK-SAME: {{\[\[}}1.000000e+00, 2.000000e+00, 2.000000e+00, 1.000000e+00],
// CHECK-SAME: [1.000000e+00, 2.000000e+00, 2.000000e+00, 1.000000e+00],
// CHECK-SAME: [1.000000e+00, 1.000000e+00, 1.000000e+00, 1.000000e+00]]]>
%0 = "tosa.const"() {value = dense<2.0> : tensor<2x2x2xf32>} : () -> tensor<2x2x2xf32>
// CHECK-SAME: {{\[\[}}-1.000000e+00, -1.000000e+00, -1.000000e+00, -1.000000e+00],
// CHECK-SAME: [-1.000000e+00, -1.000000e+00, -1.000000e+00, -1.000000e+00],
// CHECK-SAME: [-1.000000e+00, -1.000000e+00, -1.000000e+00, -1.000000e+00]],
// CHECK-SAME: {{\[\[}}-1.000000e+00, 1.000000e+00, 2.000000e+00, -1.000000e+00],
// CHECK-SAME: [-1.000000e+00, 3.000000e+00, 4.000000e+00, -1.000000e+00],
// CHECK-SAME: [-1.000000e+00, -1.000000e+00, -1.000000e+00, -1.000000e+00]],
// CHECK-SAME: {{\[\[}}-1.000000e+00, 5.000000e+00, 6.000000e+00, -1.000000e+00],
// CHECK-SAME: [-1.000000e+00, 7.000000e+00, 8.000000e+00, -1.000000e+00],
// CHECK-SAME: [-1.000000e+00, -1.000000e+00, -1.000000e+00, -1.000000e+00]]]>
%0 = "tosa.const"() {value = dense<[[[1.0, 2.0], [3.0, 4.0]],[[5.0, 6.0], [7.0, 8.0]]]> : tensor<2x2x2xf32>} : () -> tensor<2x2x2xf32>
%1 = "tosa.const"() {value = dense<[[1, 0], [0, 1], [1, 1]]> : tensor<3x2xi64>} : () -> tensor<3x2xi64>
%2 = "tosa.const"() {value = dense<1.0> : tensor<f32>} : () -> tensor<f32>
%2 = "tosa.const"() {value = dense<-1.0> : tensor<f32>} : () -> tensor<f32>
%3 = "tosa.pad"(%0, %1, %2) : (tensor<2x2x2xf32>, tensor<3x2xi64>, tensor<f32>) -> tensor<3x3x4xf32>
return %3 : tensor<3x3x4xf32>
}

// CHECK-LABEL: @pad_f32_3d_default_value
func.func @pad_f32_3d_default_value() -> (tensor<3x3x4xf32>) {
// CHECK: "tosa.const"()
// CHECK-SAME: {{\[\[}}[0.000000e+00, 0.000000e+00, 0.000000e+00, 0.000000e+00],
// CHECK-SAME: {{\[\[}}0.000000e+00, 0.000000e+00, 0.000000e+00, 0.000000e+00],
// CHECK-SAME: [0.000000e+00, 0.000000e+00, 0.000000e+00, 0.000000e+00],
// CHECK-SAME: [0.000000e+00, 0.000000e+00, 0.000000e+00, 0.000000e+00]],
// CHECK-SAME: {{\[\[}}0.000000e+00, 2.000000e+00, 2.000000e+00, 0.000000e+00],
// CHECK-SAME: [0.000000e+00, 2.000000e+00, 2.000000e+00, 0.000000e+00],
// CHECK-SAME: {{\[\[}}0.000000e+00, 1.000000e+00, 2.000000e+00, 0.000000e+00],
// CHECK-SAME: [0.000000e+00, 3.000000e+00, 4.000000e+00, 0.000000e+00],
// CHECK-SAME: [0.000000e+00, 0.000000e+00, 0.000000e+00, 0.000000e+00]],
// CHECK-SAME: {{\[\[}}0.000000e+00, 2.000000e+00, 2.000000e+00, 0.000000e+00],
// CHECK-SAME: [0.000000e+00, 2.000000e+00, 2.000000e+00, 0.000000e+00],
// CHECK-SAME: {{\[\[}}0.000000e+00, 5.000000e+00, 6.000000e+00, 0.000000e+00],
// CHECK-SAME: [0.000000e+00, 7.000000e+00, 8.000000e+00, 0.000000e+00],
// CHECK-SAME: [0.000000e+00, 0.000000e+00, 0.000000e+00, 0.000000e+00]]]>
%0 = "tosa.const"() {value = dense<2.0> : tensor<2x2x2xf32>} : () -> tensor<2x2x2xf32>
%0 = "tosa.const"() {value = dense<[[[1.0, 2.0], [3.0, 4.0]],[[5.0, 6.0], [7.0, 8.0]]]> : tensor<2x2x2xf32>} : () -> tensor<2x2x2xf32>
%1 = "tosa.const"() {value = dense<[[1, 0], [0, 1], [1, 1]]> : tensor<3x2xi64>} : () -> tensor<3x2xi64>
%2 = "tosa.pad"(%0, %1) : (tensor<2x2x2xf32>, tensor<3x2xi64>) -> tensor<3x3x4xf32>
return %2 : tensor<3x3x4xf32>
Expand Down