Skip to content
New issue

Have a question about this project? Sign up for a free GitHub account to open an issue and contact its maintainers and the community.

By clicking “Sign up for GitHub”, you agree to our terms of service and privacy statement. We’ll occasionally send you account related emails.

Already on GitHub? Sign in to your account

[AutoBump] Merge with fixes of bce800a3 (May 08, needs LLVM bump) (28) #259

Merged
merged 6 commits into from
Sep 2, 2024
Merged
Show file tree
Hide file tree
Changes from 2 commits
Commits
File filter

Filter by extension

Filter by extension

Conversations
Failed to load comments.
Loading
Jump to
Jump to file
Failed to load files.
Loading
Diff view
Diff view
7 changes: 7 additions & 0 deletions CMakeLists.txt
Original file line number Diff line number Diff line change
Expand Up @@ -54,6 +54,13 @@ cmake_dependent_option(TORCH_MLIR_ENABLE_LTC "Enables LTC backend" OFF TORCH_MLI

option(TORCH_MLIR_ENABLE_ONNX_C_IMPORTER "Enables the ONNX C importer" OFF)

# TODO(#3299): migrate to from member x.cast<T>() to mlir::cast<T>(x).
if(MSVC)
add_compile_options(/wd4996)
else()
add_compile_options(-Wno-deprecated-declarations)
endif()

macro(torch_mlir_enable_werror)
if(TORCH_MLIR_ENABLE_WERROR_FLAG)
if(NOT MSVC)
Expand Down
Original file line number Diff line number Diff line change
Expand Up @@ -40,9 +40,9 @@ TosaOpT createBinaryOpAndCast(PatternRewriter &rewriter, Operation *op,
// This specialization is for Div op. Unlike other binary ops, it doesn't
// support floating type.
template <>
tosa::DivOp createBinaryOpAndCast<DivOp>(PatternRewriter &rewriter,
Operation *op, TensorType outType,
Value lhs, Value rhs);
tosa::IntDivOp
createBinaryOpAndCast<IntDivOp>(PatternRewriter &rewriter, Operation *op,
TensorType outType, Value lhs, Value rhs);

std::optional<Value> convertTorchIndexToTfIndices(PatternRewriter &rewriter,
Operation *op,
Expand Down
9 changes: 4 additions & 5 deletions lib/Conversion/TorchToTosa/TorchToTosa.cpp
Original file line number Diff line number Diff line change
Expand Up @@ -517,8 +517,8 @@ class ConvertAtenDivOp : public OpConversionPattern<AtenOpT> {
} else {
// The output type can be different than the input types (e.g. dividing an
// int tensor results in a floating point tensor).
result = tosa::createBinaryOpAndCast<tosa::DivOp>(rewriter, op, outType,
lhs, rhsTensor)
result = tosa::createBinaryOpAndCast<tosa::IntDivOp>(
rewriter, op, outType, lhs, rhsTensor)
.getResult();
}

Expand Down Expand Up @@ -4938,16 +4938,15 @@ LogicalResult ConvertAtenOp<AtenRemainderScalarOp>::matchAndRewrite(
self = rewriter.create<tosa::CastOp>(op.getLoc(), outType, self);

auto divTensor = self;
// tosa::DivOp only supports int
if (isa<mlir::FloatType>(outElemTy)) {
auto otherTensorReciprocal = rewriter.create<tosa::ReciprocalOp>(
op.getLoc(), otherTensor.getType(), otherTensor);
divTensor = rewriter.create<tosa::MulOp>(
op.getLoc(), outType, self, otherTensorReciprocal, /*shift=*/0);
divTensor = rewriter.create<tosa::FloorOp>(op.getLoc(), outType, divTensor);
} else {
divTensor =
rewriter.create<tosa::DivOp>(op.getLoc(), outType, self, otherTensor);
divTensor = rewriter.create<tosa::IntDivOp>(op.getLoc(), outType, self,
otherTensor);
}

auto mulTensor =
Expand Down
14 changes: 7 additions & 7 deletions lib/Conversion/TorchToTosa/TosaLegalizeCommon.cpp
Original file line number Diff line number Diff line change
Expand Up @@ -114,20 +114,20 @@ tosa::MulOp createMulOpAndCast(PatternRewriter &rewriter, Operation *op,
}

template <>
tosa::DivOp createBinaryOpAndCast<DivOp>(PatternRewriter &rewriter,
Operation *op, TensorType outType,
Value lhs, Value rhs) {
tosa::IntDivOp
createBinaryOpAndCast<IntDivOp>(PatternRewriter &rewriter, Operation *op,
TensorType outType, Value lhs, Value rhs) {
auto lhsElemTy = cast<TensorType>(lhs.getType()).getElementType();
auto rhsElemTy = cast<TensorType>(rhs.getType()).getElementType();
if (isa<mlir::FloatType>(lhsElemTy) || isa<mlir::FloatType>(rhsElemTy)) {
(void)rewriter.notifyMatchFailure(op,
"tosa.div only supports integer type");
(void)rewriter.notifyMatchFailure(
op, "tosa.int_div only supports integer type");
}

lhs = promoteType(rewriter, lhs, outType);
rhs = promoteType(rewriter, rhs, outType);
return tosa::CreateOpAndInfer<tosa::DivOp>(rewriter, op->getLoc(), outType,
lhs, rhs);
return tosa::CreateOpAndInfer<tosa::IntDivOp>(rewriter, op->getLoc(), outType,
lhs, rhs);
}

std::optional<Value> convertTorchIndexToTfIndices(PatternRewriter &rewriter,
Expand Down
2 changes: 1 addition & 1 deletion test/Conversion/TorchToLinalg/flatten.mlir
Original file line number Diff line number Diff line change
Expand Up @@ -73,7 +73,7 @@ func.func @torch.aten.flatten.using_ints$flatten_back(%arg0: !torch.vtensor<[3,3
// CHECK-LABEL: func.func @torch.aten.flatten.using_ints$rank0(
// CHECK-SAME: %[[TENSOR:.*]]: !torch.vtensor<[],f32>) -> !torch.vtensor<[1],f32> {
// CHECK: %[[BUILTIN_TENSOR:.*]] = torch_c.to_builtin_tensor %[[TENSOR]] : !torch.vtensor<[],f32> -> tensor<f32>
// CHECK: %[[COLLAPSED:.*]] = tensor.expand_shape %[[BUILTIN_TENSOR]] [] : tensor<f32> into tensor<1xf32>
// CHECK: %[[COLLAPSED:.*]] = tensor.expand_shape %[[BUILTIN_TENSOR]] [] output_shape [1] : tensor<f32> into tensor<1xf32>
// CHECK: %[[RESULT:.*]] = torch_c.from_builtin_tensor %[[COLLAPSED]] : tensor<1xf32> -> !torch.vtensor<[1],f32>
// CHECK: return %[[RESULT]] : !torch.vtensor<[1],f32>

Expand Down
10 changes: 5 additions & 5 deletions test/Conversion/TorchToLinalg/unsqueeze.mlir
Original file line number Diff line number Diff line change
Expand Up @@ -6,7 +6,7 @@
// CHECK-LABEL: func.func @torch.aten.unsqueeze$basic(
// CHECK-SAME: %[[ARG:.*]]: !torch.vtensor<[],f32>) -> !torch.vtensor<[1],f32> {
// CHECK: %[[BUILTIN_TENSOR:.*]] = torch_c.to_builtin_tensor %[[ARG]] : !torch.vtensor<[],f32> -> tensor<f32>
// CHECK: %[[EXPANDED:.*]] = tensor.expand_shape %[[BUILTIN_TENSOR]] [] : tensor<f32> into tensor<1xf32>
// CHECK: %[[EXPANDED:.*]] = tensor.expand_shape %[[BUILTIN_TENSOR]] [] output_shape [1] : tensor<f32> into tensor<1xf32>
// CHECK: %[[RESULT:.*]] = torch_c.from_builtin_tensor %[[EXPANDED]] : tensor<1xf32> -> !torch.vtensor<[1],f32>
// CHECK: return %[[RESULT]] : !torch.vtensor<[1],f32>
func.func @torch.aten.unsqueeze$basic(%arg0: !torch.vtensor<[],f32>) -> !torch.vtensor<[1],f32> {
Expand All @@ -18,7 +18,7 @@ func.func @torch.aten.unsqueeze$basic(%arg0: !torch.vtensor<[],f32>) -> !torch.v
// CHECK-LABEL: func.func @torch.aten.unsqueeze$basic_negative(
// CHECK-SAME: %[[ARG:.*]]: !torch.vtensor<[],f32>) -> !torch.vtensor<[1],f32> {
// CHECK: %[[BUILTIN_TENSOR:.*]] = torch_c.to_builtin_tensor %[[ARG]] : !torch.vtensor<[],f32> -> tensor<f32>
// CHECK: %[[EXPANDED:.*]] = tensor.expand_shape %[[BUILTIN_TENSOR]] [] : tensor<f32> into tensor<1xf32>
// CHECK: %[[EXPANDED:.*]] = tensor.expand_shape %[[BUILTIN_TENSOR]] [] output_shape [1] : tensor<f32> into tensor<1xf32>
// CHECK: %[[RESULT:.*]] = torch_c.from_builtin_tensor %[[EXPANDED]] : tensor<1xf32> -> !torch.vtensor<[1],f32>
// CHECK: return %[[RESULT]] : !torch.vtensor<[1],f32>
func.func @torch.aten.unsqueeze$basic_negative(%arg0: !torch.vtensor<[],f32>) -> !torch.vtensor<[1],f32> {
Expand All @@ -30,7 +30,7 @@ func.func @torch.aten.unsqueeze$basic_negative(%arg0: !torch.vtensor<[],f32>) ->
// CHECK-LABEL: func.func @torch.aten.unsqueeze$higher_rank_front(
// CHECK-SAME: %[[ARG:.*]]: !torch.vtensor<[2,3,4],f32>) -> !torch.vtensor<[1,2,3,4],f32> {
// CHECK: %[[BUILTIN_TENSOR:.*]] = torch_c.to_builtin_tensor %[[ARG]] : !torch.vtensor<[2,3,4],f32> -> tensor<2x3x4xf32>
// CHECK: %[[EXPANDED:.*]] = tensor.expand_shape %[[BUILTIN_TENSOR]] {{\[\[}}0, 1], [2], [3]] : tensor<2x3x4xf32> into tensor<1x2x3x4xf32>
// CHECK: %[[EXPANDED:.*]] = tensor.expand_shape %[[BUILTIN_TENSOR]] {{\[\[}}0, 1], [2], [3]] output_shape [1, 2, 3, 4] : tensor<2x3x4xf32> into tensor<1x2x3x4xf32>
// CHECK: %[[RESULT:.*]] = torch_c.from_builtin_tensor %[[EXPANDED]] : tensor<1x2x3x4xf32> -> !torch.vtensor<[1,2,3,4],f32>
// CHECK: return %[[RESULT]] : !torch.vtensor<[1,2,3,4],f32>
func.func @torch.aten.unsqueeze$higher_rank_front(%arg0: !torch.vtensor<[2,3,4],f32>) -> !torch.vtensor<[1,2,3,4],f32> {
Expand All @@ -42,7 +42,7 @@ func.func @torch.aten.unsqueeze$higher_rank_front(%arg0: !torch.vtensor<[2,3,4],
// CHECK-LABEL: func.func @torch.aten.unsqueeze$higher_rank_back(
// CHECK-SAME: %[[ARG:.*]]: !torch.vtensor<[2,3,4],f32>) -> !torch.vtensor<[2,3,4,1],f32> {
// CHECK: %[[BUILTIN_TENSOR:.*]] = torch_c.to_builtin_tensor %[[ARG]] : !torch.vtensor<[2,3,4],f32> -> tensor<2x3x4xf32>
// CHECK: %[[EXPANDED:.*]] = tensor.expand_shape %[[BUILTIN_TENSOR]] {{\[\[}}0], [1], [2, 3]] : tensor<2x3x4xf32> into tensor<2x3x4x1xf32>
// CHECK: %[[EXPANDED:.*]] = tensor.expand_shape %[[BUILTIN_TENSOR]] {{\[\[}}0], [1], [2, 3]] output_shape [2, 3, 4, 1] : tensor<2x3x4xf32> into tensor<2x3x4x1xf32>
// CHECK: %[[RESULT:.*]] = torch_c.from_builtin_tensor %[[EXPANDED]] : tensor<2x3x4x1xf32> -> !torch.vtensor<[2,3,4,1],f32>
// CHECK: return %[[RESULT]] : !torch.vtensor<[2,3,4,1],f32>
func.func @torch.aten.unsqueeze$higher_rank_back(%arg0: !torch.vtensor<[2,3,4],f32>) -> !torch.vtensor<[2,3,4,1],f32> {
Expand All @@ -54,7 +54,7 @@ func.func @torch.aten.unsqueeze$higher_rank_back(%arg0: !torch.vtensor<[2,3,4],f
// CHECK-LABEL: func.func @torch.aten.unsqueeze$higher_rank_middle(
// CHECK-SAME: %[[ARG:.*]]: !torch.vtensor<[2,3,4],f32>) -> !torch.vtensor<[2,3,1,4],f32> {
// CHECK: %[[BUILTIN_TENSOR:.*]] = torch_c.to_builtin_tensor %[[ARG]] : !torch.vtensor<[2,3,4],f32> -> tensor<2x3x4xf32>
// CHECK: %[[EXPANDED:.*]] = tensor.expand_shape %[[BUILTIN_TENSOR]] {{\[\[}}0], [1], [2, 3]] : tensor<2x3x4xf32> into tensor<2x3x1x4xf32>
// CHECK: %[[EXPANDED:.*]] = tensor.expand_shape %[[BUILTIN_TENSOR]] {{\[\[}}0], [1], [2, 3]] output_shape [2, 3, 1, 4] : tensor<2x3x4xf32> into tensor<2x3x1x4xf32>
// CHECK: %[[RESULT:.*]] = torch_c.from_builtin_tensor %[[EXPANDED]] : tensor<2x3x1x4xf32> -> !torch.vtensor<[2,3,1,4],f32>
// CHECK: return %[[RESULT]] : !torch.vtensor<[2,3,1,4],f32>
func.func @torch.aten.unsqueeze$higher_rank_middle(%arg0: !torch.vtensor<[2,3,4],f32>) -> !torch.vtensor<[2,3,1,4],f32> {
Expand Down
18 changes: 11 additions & 7 deletions test/Conversion/TorchToLinalg/view.mlir
Original file line number Diff line number Diff line change
Expand Up @@ -6,7 +6,7 @@
// CHECK-SAME: %[[ARG:.*]]: !torch.vtensor<[3,2],f32>) -> !torch.vtensor<[2,3],f32> {
// CHECK: %[[BUILTIN_TENSOR:.*]] = torch_c.to_builtin_tensor %[[ARG]] : !torch.vtensor<[3,2],f32> -> tensor<3x2xf32>
// CHECK: %[[COLLAPSED:.*]] = tensor.collapse_shape %[[BUILTIN_TENSOR]] {{\[\[}}0, 1]] : tensor<3x2xf32> into tensor<6xf32>
// CHECK: %[[EXPANDED:.*]] = tensor.expand_shape %[[COLLAPSED]] {{\[\[}}0, 1]] : tensor<6xf32> into tensor<2x3xf32>
// CHECK: %[[EXPANDED:.*]] = tensor.expand_shape %[[COLLAPSED]] {{\[\[}}0, 1]] output_shape [2, 3] : tensor<6xf32> into tensor<2x3xf32>
// CHECK: %[[BUILTIN_TENSOR_CAST:.*]] = torch_c.from_builtin_tensor %[[EXPANDED]] : tensor<2x3xf32> -> !torch.vtensor<[2,3],f32>
// CHECK: return %[[BUILTIN_TENSOR_CAST]] : !torch.vtensor<[2,3],f32>

Expand Down Expand Up @@ -64,7 +64,7 @@ func.func @torch.aten.view$dynamictest2(%arg0: !torch.vtensor<[?,6,?],f32>) -> !
// CHECK: %[[BUILTIN_TENSOR:.*]] = torch_c.to_builtin_tensor %[[ARG]] : !torch.vtensor<[1,?,128],f32> -> tensor<1x?x128xf32>
// CHECK: %[[CASTED:.*]] = tensor.cast %[[BUILTIN_TENSOR]] : tensor<1x?x128xf32> to tensor<1x16x128xf32>
// CHECK: %[[COLLAPSED:.*]] = tensor.collapse_shape %[[CASTED]] {{\[\[}}0, 1], [2]] : tensor<1x16x128xf32> into tensor<16x128xf32>
// CHECK: %[[EXPANDED:.*]] = tensor.expand_shape %[[COLLAPSED]] {{\[\[}}0], [1, 2]] : tensor<16x128xf32> into tensor<16x1x128xf32>
// CHECK: %[[EXPANDED:.*]] = tensor.expand_shape %[[COLLAPSED]] {{\[\[}}0], [1, 2]] output_shape [16, 1, 128] : tensor<16x128xf32> into tensor<16x1x128xf32>
// CHECK: %[[BUILTIN_TENSOR_CAST:.*]] = torch_c.from_builtin_tensor %[[EXPANDED]] : tensor<16x1x128xf32> -> !torch.vtensor<[16,1,128],f32>
// CHECK: return %[[BUILTIN_TENSOR_CAST]] : !torch.vtensor<[16,1,128],f32>

Expand All @@ -83,7 +83,7 @@ func.func @torch.aten.view$dynamicVal(%arg0: !torch.vtensor<[1,?,128],f32>) -> !
// CHECK-SAME: %[[ARG:.*]]: !torch.vtensor<[4,5,6],f32>) -> !torch.vtensor<[8,1,?,1],f32> {
// CHECK: %[[BUILTIN_TENSOR:.*]] = torch_c.to_builtin_tensor %[[ARG]] : !torch.vtensor<[4,5,6],f32> -> tensor<4x5x6xf32>
// CHECK: %[[COLLAPSED:.*]] = tensor.collapse_shape %[[BUILTIN_TENSOR]] {{\[\[}}0, 1, 2]] : tensor<4x5x6xf32> into tensor<120xf32>
// CHECK: %[[EXPANDED:.*]] = tensor.expand_shape %[[COLLAPSED]] {{\[\[}}0, 1, 2, 3]] : tensor<120xf32> into tensor<8x1x15x1xf32>
// CHECK: %[[EXPANDED:.*]] = tensor.expand_shape %[[COLLAPSED]] {{\[\[}}0, 1, 2, 3]] output_shape [8, 1, 15, 1] : tensor<120xf32> into tensor<8x1x15x1xf32>
// CHECK: %[[CAST:.*]] = tensor.cast %[[EXPANDED]] : tensor<8x1x15x1xf32> to tensor<8x1x?x1xf32>
// CHECK: %[[BUILTIN_TENSOR_CAST:.*]] = torch_c.from_builtin_tensor %[[CAST]] : tensor<8x1x?x1xf32> -> !torch.vtensor<[8,1,?,1],f32>
// CHECK: return %[[BUILTIN_TENSOR_CAST]] : !torch.vtensor<[8,1,?,1],f32>
Expand All @@ -103,7 +103,7 @@ func.func @torch.aten$dynamicValOutput(%arg0: !torch.vtensor<[4,5,6],f32>) -> !t
// CHECK-SAME: %[[ARG:.*]]: !torch.vtensor<[4,5,6],f32>) -> !torch.vtensor<[2,1,2,3,?],f32> {
// CHECK: %[[BUILTIN_TENSOR:.*]] = torch_c.to_builtin_tensor %[[ARG]] : !torch.vtensor<[4,5,6],f32> -> tensor<4x5x6xf32>
// CHECK: %[[COLLAPSED:.*]] = tensor.collapse_shape %[[BUILTIN_TENSOR]] {{\[\[}}0], [1, 2]] : tensor<4x5x6xf32> into tensor<4x30xf32>
// CHECK: %[[EXPANDED:.*]] = tensor.expand_shape %[[COLLAPSED]] {{\[\[}}0, 1, 2], [3, 4]] : tensor<4x30xf32> into tensor<2x1x2x3x10xf32>
// CHECK: %[[EXPANDED:.*]] = tensor.expand_shape %[[COLLAPSED]] {{\[\[}}0, 1, 2], [3, 4]] output_shape [2, 1, 2, 3, 10] : tensor<4x30xf32> into tensor<2x1x2x3x10xf32>
// CHECK: %[[CAST:.*]] = tensor.cast %[[EXPANDED]] : tensor<2x1x2x3x10xf32> to tensor<2x1x2x3x?xf32>
// CHECK: %[[BUILTIN_TENSOR_CAST:.*]] = torch_c.from_builtin_tensor %[[CAST]] : tensor<2x1x2x3x?xf32> -> !torch.vtensor<[2,1,2,3,?],f32>
// CHECK: return %[[BUILTIN_TENSOR_CAST]] : !torch.vtensor<[2,1,2,3,?],f32>
Expand All @@ -125,7 +125,7 @@ func.func @torch.aten$dynamicValOutput2(%arg0: !torch.vtensor<[4,5,6],f32>) -> !
// CHECK-SAME: %[[ARG:.*]]: !torch.vtensor<[2,6],f32>) -> !torch.vtensor<[3,2,2],f32> {
// CHECK: %[[BUILTIN_TENSOR:.*]] = torch_c.to_builtin_tensor %[[ARG]] : !torch.vtensor<[2,6],f32> -> tensor<2x6xf32>
// CHECK: %[[COLLAPSED:.*]] = tensor.collapse_shape %[[BUILTIN_TENSOR]] {{\[\[}}0, 1]] : tensor<2x6xf32> into tensor<12xf32>
// CHECK: %[[EXPANDED:.*]] = tensor.expand_shape %[[COLLAPSED]] {{\[\[}}0, 1, 2]] : tensor<12xf32> into tensor<3x2x2xf32>
// CHECK: %[[EXPANDED:.*]] = tensor.expand_shape %[[COLLAPSED]] {{\[\[}}0, 1, 2]] output_shape [3, 2, 2] : tensor<12xf32> into tensor<3x2x2xf32>
// CHECK: %[[BUILTIN_TENSOR_CAST:.*]] = torch_c.from_builtin_tensor %[[EXPANDED]] : tensor<3x2x2xf32> -> !torch.vtensor<[3,2,2],f32>
// CHECK: return %[[BUILTIN_TENSOR_CAST]] : !torch.vtensor<[3,2,2],f32>

Expand All @@ -144,7 +144,9 @@ func.func @torch.aten.view$expandInferredDim(%arg0: !torch.vtensor<[2,6],f32>) -
// CHECK-SAME: %[[ARG:.*]]: !torch.vtensor<[10,3,?,2,3],f32>) -> !torch.vtensor<[2,3,5,?,6],f32> {
// CHECK: %[[BUILTIN_TENSOR:.*]] = torch_c.to_builtin_tensor %[[ARG]] : !torch.vtensor<[10,3,?,2,3],f32> -> tensor<10x3x?x2x3xf32>
// CHECK: %[[COLLAPSE:.*]] = tensor.collapse_shape %[[BUILTIN_TENSOR]] {{\[\[}}0, 1], [2], [3, 4]] : tensor<10x3x?x2x3xf32> into tensor<30x?x6xf32>
// CHECK: %[[EXPAND:.*]] = tensor.expand_shape %[[COLLAPSE]] {{\[\[}}0, 1, 2], [3], [4]] : tensor<30x?x6xf32> into tensor<2x3x5x?x6xf32>
// CHECK: %[[C1:.*]] = arith.constant 1 : index
// CHECK: %[[DIM:.*]] = tensor.dim %[[COLLAPSE]], %[[C1]] : tensor<30x?x6xf32>
// CHECK: %[[EXPAND:.*]] = tensor.expand_shape %[[COLLAPSE]] {{\[\[}}0, 1, 2], [3], [4]] output_shape [2, 3, 5, %[[DIM]], 6] : tensor<30x?x6xf32> into tensor<2x3x5x?x6xf32>
// CHECK: %[[BUILTIN_TENSOR_CAST:.*]] = torch_c.from_builtin_tensor %[[EXPAND]] : tensor<2x3x5x?x6xf32> -> !torch.vtensor<[2,3,5,?,6],f32>
// CHECK: return %[[BUILTIN_TENSOR_CAST]] : !torch.vtensor<[2,3,5,?,6],f32>

Expand Down Expand Up @@ -241,7 +243,9 @@ func.func @torch.aten.view$castingView (%arg0 : !torch.vtensor<[?,?,?], f32>) ->
// CHECK-SAME: %[[ARG:.*]]: !torch.vtensor<[10,?,2,3],f32>) -> !torch.vtensor<[2,5,?,6],f32> {
// CHECK: %[[BUILTIN_TENSOR:.*]] = torch_c.to_builtin_tensor %[[ARG]] : !torch.vtensor<[10,?,2,3],f32> -> tensor<10x?x2x3xf32>
// CHECK: %[[COLLAPSE:.*]] = tensor.collapse_shape %[[BUILTIN_TENSOR]] {{\[\[}}0], [1], [2, 3]] : tensor<10x?x2x3xf32> into tensor<10x?x6xf32>
// CHECK: %[[EXPAND:.*]] = tensor.expand_shape %[[COLLAPSE]] {{\[\[}}0, 1], [2], [3]] : tensor<10x?x6xf32> into tensor<2x5x?x6xf32>
// CHECK: %[[C1:.*]] = arith.constant 1 : index
// CHECK: %[[DIM:.*]] = tensor.dim %[[COLLAPSE]], %[[C1]] : tensor<10x?x6xf32>
// CHECK: %[[EXPAND:.*]] = tensor.expand_shape %[[COLLAPSE]] {{\[\[}}0, 1], [2], [3]] output_shape [2, 5, %[[DIM]], 6] : tensor<10x?x6xf32> into tensor<2x5x?x6xf32>
// CHECK: %[[BUILTIN_TENSOR_CAST:.*]] = torch_c.from_builtin_tensor %[[EXPAND]] : tensor<2x5x?x6xf32> -> !torch.vtensor<[2,5,?,6],f32>
// CHECK: return %[[BUILTIN_TENSOR_CAST]] : !torch.vtensor<[2,5,?,6],f32>

Expand Down
Original file line number Diff line number Diff line change
Expand Up @@ -109,7 +109,7 @@ func.func @torch.aten.div.Tensor$mixed_type_fp(%arg0: !torch.vtensor<[?, ?],f32>
// CHECK-SAME: %[[VAL_0:.*]]: tensor<?x?xi16>,
// CHECK-SAME: %[[VAL_1:.*]]: tensor<?x?xi32>
// CHECK: %[[VAL_2:.*]] = tosa.cast %[[VAL_0]] : (tensor<?x?xi16>) -> tensor<?x?xi32>
// CHECK: %[[VAL_3:.*]] = tosa.div %[[VAL_2]], %[[VAL_1]] : (tensor<?x?xi32>, tensor<?x?xi32>) -> tensor<?x?xi32>
// CHECK: %[[VAL_3:.*]] = tosa.int_div %[[VAL_2]], %[[VAL_1]] : (tensor<?x?xi32>, tensor<?x?xi32>) -> tensor<?x?xi32>
func.func @torch.aten.div.Tensor$mixed_type_int(%arg0: !torch.vtensor<[?, ?],si16>, %arg1: !torch.vtensor<[?, ?],si32>) -> !torch.vtensor<[?, ?],si32> {
%0 = torch.aten.div.Tensor %arg0, %arg1 : !torch.vtensor<[?, ?],si16>, !torch.vtensor<[?, ?],si32> -> !torch.vtensor<[?, ?],si32>
return %0 : !torch.vtensor<[?, ?],si32>
Expand Down
4 changes: 2 additions & 2 deletions test/Dialect/TorchConversion/convert-custom-quant-op.mlir
Original file line number Diff line number Diff line change
Expand Up @@ -20,8 +20,8 @@ func.func @forward(%arg0: !torch.vtensor<[1,1,2],f16>) -> !torch.vtensor<[1,1,2]
// CHECK: %[[SCALES:.*]] = torch_c.to_builtin_tensor %[[TENSOR2]] : !torch.vtensor<[2,1,1],f16> -> tensor<2x1x1xf16>
// CHECK: %[[TENSOR3:.*]] = torch.vtensor.literal(dense<0.000000e+00> : tensor<2x1x1xf16>) : !torch.vtensor<[2,1,1],f16>
// CHECK: %[[ZPS:.*]] = torch_c.to_builtin_tensor %[[TENSOR3]] : !torch.vtensor<[2,1,1],f16> -> tensor<2x1x1xf16>
// CHECK: %[[EXPANDED_LHS:.*]] = tensor.expand_shape %[[LHS]] {{\[\[}}0], [1], [2, 3]] : tensor<1x1x2xf16> into tensor<1x1x1x2xf16>
// CHECK: %[[EXPANDED_RHS:.*]] = tensor.expand_shape %[[QUANT_RHS]] {{\[\[}}0], [1, 2]] : tensor<2x2xi8> into tensor<2x1x2xi8>
// CHECK: %[[EXPANDED_LHS:.*]] = tensor.expand_shape %[[LHS]] {{\[\[}}0], [1], [2, 3]] output_shape [1, 1, 1, 2] : tensor<1x1x2xf16> into tensor<1x1x1x2xf16>
// CHECK: %[[EXPANDED_RHS:.*]] = tensor.expand_shape %[[QUANT_RHS]] {{\[\[}}0], [1, 2]] output_shape [2, 1, 2] : tensor<2x2xi8> into tensor<2x1x2xi8>
// CHECK: %[[CST:.*]] = arith.constant 0.000000e+00 : f16
// CHECK: %[[EMPTY1:.*]] = tensor.empty() : tensor<2x1x2xf16>
// CHECK: %[[EMPTY2:.*]] = tensor.empty() : tensor<1x1x2xf16>
Expand Down
Loading