Skip to content
New issue

Have a question about this project? Sign up for a free GitHub account to open an issue and contact its maintainers and the community.

By clicking “Sign up for GitHub”, you agree to our terms of service and privacy statement. We’ll occasionally send you account related emails.

Already on GitHub? Sign in to your account

[AutoBump] Merge with 911e7235 (May 13) (36) #269

Merged
merged 6 commits into from
Sep 4, 2024
Merged
Show file tree
Hide file tree
Changes from all commits
Commits
File filter

Filter by extension

Filter by extension

Conversations
Failed to load comments.
Loading
Jump to
Jump to file
Failed to load files.
Loading
Diff view
Diff view
17 changes: 17 additions & 0 deletions README.md
Original file line number Diff line number Diff line change
Expand Up @@ -76,6 +76,23 @@ pip install torch-mlir -f https://github.com/llvm/torch-mlir-release/releases/ex

## Demos

### FxImporter ResNet18
```shell
# Get the latest example if you haven't checked out the code
wget https://raw.githubusercontent.com/llvm/torch-mlir/main/projects/pt1/examples/fximporter_resnet18.py

# Run ResNet18 as a standalone script.
python projects/pt1/examples/fximporter_resnet18.py

# Output
load image from https://upload.wikimedia.org/wikipedia/commons/2/26/YellowLabradorLooking_new.jpg
...
PyTorch prediction
[('Labrador retriever', 70.65674591064453), ('golden retriever', 4.988346099853516), ('Saluki, gazelle hound', 4.477451324462891)]
torch-mlir prediction
[('Labrador retriever', 70.6567153930664), ('golden retriever', 4.988325119018555), ('Saluki, gazelle hound', 4.477458477020264)]
```

### TorchScript ResNet18

Standalone script to Convert a PyTorch ResNet18 model to MLIR and run it on the CPU Backend:
Expand Down
32 changes: 1 addition & 31 deletions lib/Conversion/TorchToStablehlo/Basic.cpp
Original file line number Diff line number Diff line change
Expand Up @@ -1819,36 +1819,6 @@ LogicalResult ConvertAtenOp<AtenPowTensorTensorOp>::matchAndRewrite(
return success();
}

template <>
LogicalResult ConvertAtenOp<AtenUniformOp>::matchAndRewrite(
AtenUniformOp op, OpAdaptor adaptor,
ConversionPatternRewriter &rewriter) const {
Value self = adaptor.getSelf();
Value generator = adaptor.getGenerator();
Location loc = op.getLoc();

if (!isa<Torch::NoneType>(generator.getType()))
return rewriter.notifyMatchFailure(
op, "The generator has to be None because only global default "
"generator is supported");

auto elements = cast<RankedTensorType>(self.getType()).getShape();
if (llvm::any_of(elements,
[](int64_t dim) { return dim == ShapedType::kDynamic; }))
return rewriter.notifyMatchFailure(op, "Dynamic shape support TBD");
auto shape_tensor = rewriter.create<stablehlo::ConstantOp>(
loc, rewriter.getI64TensorAttr(elements));
auto outTy = getTypeConverter()->convertType(op.getType());
auto outElemTy = cast<RankedTensorType>(outTy).getElementType();
Value from =
hlo::scalarToStablehloTensor(rewriter, op, adaptor.getFrom(), outElemTy);
Value to =
hlo::scalarToStablehloTensor(rewriter, op, adaptor.getTo(), outElemTy);
rewriter.replaceOpWithNewOp<stablehlo::RngOp>(
op, outTy, from, to, shape_tensor, stablehlo::RngDistribution::UNIFORM);
return success();
}

// Converts `aten.empty.memory_format` to `tensor.empty` op.
template <>
LogicalResult ConvertAtenOp<AtenEmptyMemoryFormatOp>::matchAndRewrite(
Expand Down Expand Up @@ -2240,7 +2210,7 @@ void mlir::torch::torch_to_stablehlo::populateBasicOpPatternsAndLegality(
INSERT_ATENOP_PATTERN(AtenToDtypeOp);
INSERT_ATENOP_PATTERN(AtenWhereSelfOp);
INSERT_ATENOP_PATTERN(AtenPowTensorTensorOp);
INSERT_ATENOP_PATTERN(AtenUniformOp);

INSERT_ATENOP_PATTERN(AtenEmptyMemoryFormatOp);
INSERT_ATENOP_PATTERN(AtenFillScalarOp);
INSERT_ATENOP_PATTERN(AtenFlipOp);
Expand Down
1 change: 1 addition & 0 deletions lib/Conversion/TorchToStablehlo/CMakeLists.txt
Original file line number Diff line number Diff line change
Expand Up @@ -6,6 +6,7 @@ add_mlir_conversion_library(TorchMLIRTorchToStablehlo
Linear.cpp
ViewLike.cpp
Reduction.cpp
Rng.cpp
Pooling.cpp
Utils.cpp

Expand Down
5 changes: 5 additions & 0 deletions lib/Conversion/TorchToStablehlo/PopulatePatterns.h
Original file line number Diff line number Diff line change
Expand Up @@ -62,6 +62,11 @@ void populatePoolingOpPatternsAndLegality(
TypeConverter &typeConverter, RewritePatternSet &patterns,
ConversionTarget &target, const TorchToStablehloOptions &options);

void populateRngOpPatternsAndLegality(TypeConverter &typeConverter,
RewritePatternSet &patterns,
ConversionTarget &target,
const TorchToStablehloOptions &options);

} // namespace torch_to_stablehlo
} // namespace torch
} // namespace mlir
Expand Down
140 changes: 140 additions & 0 deletions lib/Conversion/TorchToStablehlo/Rng.cpp
Original file line number Diff line number Diff line change
@@ -0,0 +1,140 @@
//===----------------------------------------------------------------------===//
//
// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
// See https://llvm.org/LICENSE.txt for license information.
// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
// Also available under a BSD-style license. See LICENSE.
//
//===----------------------------------------------------------------------===//

#include "torch-mlir/Conversion/TorchToStablehlo/TorchToStablehlo.h"

#include "../PassDetail.h"
#include "./PopulatePatterns.h"

#include "mlir/IR/BuiltinTypes.h"
#include "stablehlo/dialect/StablehloOps.h"
#include "torch-mlir/Conversion/TorchToStablehlo/StablehloLegalizeUtils.h"
#include "torch-mlir/Dialect/Torch/IR/TorchDialect.h"
#include "torch-mlir/Dialect/Torch/IR/TorchOps.h"
#include "torch-mlir/Dialect/Torch/IR/TorchTypes.h"
#include "torch-mlir/Dialect/TorchConversion/IR/TorchConversionOps.h"

using namespace mlir;
using namespace mlir::torch;
using namespace mlir::torch::Torch;
using namespace mlir::torch::torch_to_stablehlo;

template <>
LogicalResult ConvertAtenOp<AtenUniformOp>::matchAndRewrite(
AtenUniformOp op, OpAdaptor adaptor,
ConversionPatternRewriter &rewriter) const {
Value self = adaptor.getSelf();
Value generator = adaptor.getGenerator();
Location loc = op.getLoc();

if (!isa<Torch::NoneType>(generator.getType()))
return rewriter.notifyMatchFailure(
op, "The generator has to be None because only global default "
"generator is supported");

auto elements = cast<RankedTensorType>(self.getType()).getShape();
if (llvm::any_of(elements,
[](int64_t dim) { return dim == ShapedType::kDynamic; }))
return rewriter.notifyMatchFailure(op, "Dynamic shape support TBD");
auto shape_tensor = rewriter.create<stablehlo::ConstantOp>(
loc, rewriter.getI64TensorAttr(elements));
auto outTy = getTypeConverter()->convertType(op.getType());
auto outElemTy = cast<RankedTensorType>(outTy).getElementType();
Value from =
hlo::scalarToStablehloTensor(rewriter, op, adaptor.getFrom(), outElemTy);
Value to =
hlo::scalarToStablehloTensor(rewriter, op, adaptor.getTo(), outElemTy);
rewriter.replaceOpWithNewOp<stablehlo::RngOp>(
op, outTy, from, to, shape_tensor, stablehlo::RngDistribution::UNIFORM);
return success();
}

template <>
LogicalResult ConvertAtenOp<AtenRandnGeneratorOp>::matchAndRewrite(
AtenRandnGeneratorOp op, OpAdaptor adaptor,
ConversionPatternRewriter &rewriter) const {
Value generator = adaptor.getGenerator();
Location loc = op.getLoc();

if (!isa<Torch::NoneType>(generator.getType())) {
return rewriter.notifyMatchFailure(
op, "The generator has to be None because only global default "
"generator is supported");
}
llvm::SmallVector<int64_t> shape;
if (!matchPattern(op.getSize(), m_TorchListOfConstantInts(shape))) {
return rewriter.notifyMatchFailure(op, "size must be constant");
}

auto outTy = getTypeConverter()->convertType(op.getType());
auto outElemTy = cast<RankedTensorType>(outTy).getElementType();
if (!isa<mlir::FloatType>(outElemTy)) {
return rewriter.notifyMatchFailure(op,
"only support output with float type");
}
auto scalarTy = RankedTensorType::get({}, outElemTy);

Value shapeTensor = rewriter.create<stablehlo::ConstantOp>(
loc, rewriter.getI64TensorAttr(shape));
Value mean = rewriter.create<stablehlo::ConstantOp>(
loc,
DenseElementsAttr::get(scalarTy, rewriter.getFloatAttr(outElemTy, 0.0)));
Value var = rewriter.create<stablehlo::ConstantOp>(
loc,
DenseElementsAttr::get(scalarTy, rewriter.getFloatAttr(outElemTy, 1.0)));

rewriter.replaceOpWithNewOp<stablehlo::RngOp>(
op, outTy, mean, var, shapeTensor, stablehlo::RngDistribution::NORMAL);
return success();
}

template <>
LogicalResult ConvertAtenOp<AtenNormalFunctionalOp>::matchAndRewrite(
AtenNormalFunctionalOp op, OpAdaptor adaptor,
ConversionPatternRewriter &rewriter) const {
Value self = adaptor.getSelf();
Value generator = adaptor.getGenerator();
Location loc = op.getLoc();

if (!isa<Torch::NoneType>(generator.getType()))
return rewriter.notifyMatchFailure(
op, "The generator has to be None because only global default "
"generator is supported");

auto elements = cast<RankedTensorType>(self.getType()).getShape();
if (llvm::any_of(elements,
[](int64_t dim) { return dim == ShapedType::kDynamic; }))
return rewriter.notifyMatchFailure(op, "Dynamic shape support TBD");
auto shapeTensor = rewriter.create<stablehlo::ConstantOp>(
loc, rewriter.getI64TensorAttr(elements));
auto outTy = getTypeConverter()->convertType(op.getType());
auto outElemTy = cast<RankedTensorType>(outTy).getElementType();
Value mean =
hlo::scalarToStablehloTensor(rewriter, op, adaptor.getMean(), outElemTy);
Value std =
hlo::scalarToStablehloTensor(rewriter, op, adaptor.getStd(), outElemTy);
rewriter.replaceOpWithNewOp<stablehlo::RngOp>(
op, outTy, mean, std, shapeTensor, stablehlo::RngDistribution::NORMAL);
return success();
}

void mlir::torch::torch_to_stablehlo::populateRngOpPatternsAndLegality(
TypeConverter &typeConverter, RewritePatternSet &patterns,
ConversionTarget &target, const TorchToStablehloOptions &options) {
MLIRContext *context = patterns.getContext();

#define INSERT_ATENOP_PATTERN(AtenOp) \
target.addIllegalOp<AtenOp>(); \
patterns.add<ConvertAtenOp<AtenOp>>(typeConverter, context, options)

INSERT_ATENOP_PATTERN(AtenUniformOp);
INSERT_ATENOP_PATTERN(AtenRandnGeneratorOp);
INSERT_ATENOP_PATTERN(AtenNormalFunctionalOp);
#undef INSERT_ATENOP_PATTERN
}
2 changes: 2 additions & 0 deletions lib/Conversion/TorchToStablehlo/TorchToStablehlo.cpp
Original file line number Diff line number Diff line change
Expand Up @@ -75,6 +75,8 @@ class ConvertTorchToStablehlo
typeConverter, patterns, target, options);
torch_to_stablehlo::populatePoolingOpPatternsAndLegality(
typeConverter, patterns, target, options);
torch_to_stablehlo::populateRngOpPatternsAndLegality(
typeConverter, patterns, target, options);

if (failed(applyPartialConversion(getOperation(), target,
std::move(patterns)))) {
Expand Down
Loading
Loading