Skip to content
forked from smduan/Fed-CCVR

No Fear of Heterogeneity: Classifier Calibration for Federated Learning with Non-IID Data

License

Notifications You must be signed in to change notification settings

XueBaolu/Fed-CCVR

 
 

Folders and files

NameName
Last commit message
Last commit date

Latest commit

 

History

20 Commits
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Repository files navigation

Implementation of the paper No Fear of Heterogeneity: Classifier Calibration for Federated Learning with Non-IID Data

Run this repo:

  1. Download the cifar10 dataset and save as images in the dir "./data/"

    python data_process.py

  2. Run the main procedure:

    python main.py

  3. Run t-SNE visualization:

    python visualize.py [--model_before_calibration MODEL_BEFORE_CALIBRATION] [--model_after_calibration MODEL_AFTER_CALIBRATION] [--random_state RANDOM_STATE] [--save_path SAVE_PATH]

    Default arguments are:

    • MODEL_BEFORE_CALIBRATION: ./save_model/model-epoch9.pth
    • MODEL_AFTER_CALIBRATION: ./save_model/model.pth
    • RANDOM_STATE: 1
    • SAVE_PATH: ./visualize/tsne.png

About

No Fear of Heterogeneity: Classifier Calibration for Federated Learning with Non-IID Data

Resources

License

Stars

Watchers

Forks

Releases

No releases published

Packages

No packages published

Languages

  • Python 100.0%