CUB-200-2011: link:https://pan.baidu.com/s/1cWVu7JHSQV9Pvw-dLlkDQw, extraction code:zzlz.
Details
|--CUB_200_2011
|--images
|--001...
|--002...
...
|--classes.txt
|--image_class_labels.txt
|--image.txt
|--train_test_split.txt
FGVC-Aircraft: link:https://pan.baidu.com/s/1MEiwAJbBGmsCbpZ5u19x8Q, extraction code:91su.
Details
|--FGVC-aircraft
|--data
|--images
|--...
|--test.txt
|--train.txt
Stanford Cars: link:https://pan.baidu.com/s/1c6mivvIXXEjERP2ilDtHNg, extraction code:o96t.
Details
|--Stanford_Cars
|--cars_test
|--...
|--cars_train
|--...
|--test.txt
|--train.txt
Stanford Dogs: link:https://pan.baidu.com/s/1mBDOOVwgT0RAzjIITlwbgg, extraction code:ivsu.
Details
|--dogs
|--images
|--Images
|--file
|--file
...
|--lists
|--file
|--file
...
|--test_data.mat
|--train_data.mat
(1) Put the parameters of Resnet18 into the path .models/petrained. This parameters can be download at link:https://pan.baidu.com/s/1uGfo2JCiX4GmqkGE2waG7A, extraction code:7bu5.
(2) Finetune the network with the cross-entropy loss for classification, such as: python finetune_cub.py.
(3) Choose the network with minimum loss as the finetuned network.
You can also use our pretrained models. The pretrained models can be download at link:https://pan.baidu.com/s/15FlAAZD9NZtW9MVKdwy7RA, extraction code:fith.
(1) Put the finetuned network into the path .checkpoint.
(2) Train the network, such as: python cub_train.py
@article{xiang2021sub,
title={Sub-region localized hashing for fine-grained image retrieval},
author={Xiang, Xinguang and Zhang, Yajie and Jin, Lu and Li, Zechao and Tang, Jinhui},
journal={IEEE Transactions on Image Processing},
volume={31},
pages={314--326},
year={2021},
publisher={IEEE}
}