Skip to content

Commit

Permalink
BPCG with direct solve extension (#507)
Browse files Browse the repository at this point in the history
* added direct solve feature BPCG via LP solver

* adjusted for arbitrary LP solver

* fixed deps

* cleanup and comment

* minor

* added reporting of direct solve step

* chose highs as standard solver

* added sparsification

* added sparsification code

* cleanup

* minor cleanup

* minor

* added generalized direct_solve

* clean up, docu, additional direct_solve

* docstrings fixed?

* sparsifier active set (#508)

* sparsifier active set

* fix typo

* added sparsifying tests

* generic tolerane

* remove sparsification

* format

* HiGHS dep

* Quadratic solve structure (#511)

* sparsifier active set

* start working on LP AS

* first working quadratic

* remove quadratic LP from current

* cleanup

* HiGHS in test deps

* working reworked LP quadratic

* working version generic quadratic

* slow version generic quadratic

* faster term manipulation

* copy sufficient

* remove comment

* added test for quadratic

* minor

* simplify example

* clean up code, verify error with ASQuad

* Add update_weights! to fix direct solve with active_set_quadratic

* remove direct solve from BPCG

* rng changed

---------

Co-authored-by: Sébastien Designolle <[email protected]>

* update example

* format

* clean up example

* fix callback

---------

Co-authored-by: Mathieu Besançon <[email protected]>
Co-authored-by: Sébastien Designolle <[email protected]>
  • Loading branch information
3 people authored Oct 25, 2024
1 parent 96e7ec9 commit 318d2b9
Show file tree
Hide file tree
Showing 16 changed files with 1,206 additions and 9 deletions.
3 changes: 2 additions & 1 deletion Project.toml
Original file line number Diff line number Diff line change
Expand Up @@ -43,6 +43,7 @@ DynamicPolynomials = "7c1d4256-1411-5781-91ec-d7bc3513ac07"
FiniteDifferences = "26cc04aa-876d-5657-8c51-4c34ba976000"
ForwardDiff = "f6369f11-7733-5829-9624-2563aa707210"
GLPK = "60bf3e95-4087-53dc-ae20-288a0d20c6a6"
HiGHS = "87dc4568-4c63-4d18-b0c0-bb2238e4078b"
Hypatia = "b99e6be6-89ff-11e8-14f8-45c827f4f8f2"
JSON = "682c06a0-de6a-54ab-a142-c8b1cf79cde6"
JuMP = "4076af6c-e467-56ae-b986-b466b2749572"
Expand All @@ -58,4 +59,4 @@ Tullio = "bc48ee85-29a4-5162-ae0b-a64e1601d4bc"
ZipFile = "a5390f91-8eb1-5f08-bee0-b1d1ffed6cea"

[targets]
test = ["CSV", "Combinatorics", "DataFrames", "Distributions", "DoubleFloats", "DynamicPolynomials", "FiniteDifferences", "ForwardDiff", "GLPK", "JSON", "JuMP", "LaTeXStrings", "MAT", "MultivariatePolynomials", "Plots", "PlotThemes", "Polyhedra", "ReverseDiff", "ZipFile", "Test", "Tullio", "Clp", "Hypatia"]
test = ["CSV", "Combinatorics", "DataFrames", "Distributions", "DoubleFloats", "DynamicPolynomials", "FiniteDifferences", "ForwardDiff", "GLPK", "HiGHS", "JSON", "JuMP", "LaTeXStrings", "MAT", "MultivariatePolynomials", "Plots", "PlotThemes", "Polyhedra", "ReverseDiff", "ZipFile", "Test", "Tullio", "Clp", "Hypatia"]
174 changes: 174 additions & 0 deletions examples/blended_pairwise_with_direct.jl
Original file line number Diff line number Diff line change
@@ -0,0 +1,174 @@
#=
This example demonstrates the use of the Blended Pairwise Conditional Gradient algorithm
with direct solve steps for a quadratic optimization problem over a sparse polytope.
Note the special structure of f(x) = norm(x - x0)^2 that we assume here
The example showcases how the algorithm balances between:
- Pairwise steps for efficient optimization
- Periodic direct solves for handling the quadratic objective
- Lazy (approximate) linear minimization steps for improved iteration complexity
It also demonstrates how to set up custom callbacks for tracking algorithm progress.
=#

using FrankWolfe
using LinearAlgebra
using Random

import HiGHS
import MathOptInterface as MOI

include("../examples/plot_utils.jl")

n = Int(1e4)
k = 10_000

s = 10
@info "Seed $s"
Random.seed!(s)

xpi = rand(n);
total = sum(xpi);

const xp = xpi ./ total;

f(x) = norm(x - xp)^2
function grad!(storage, x)
@. storage = 2 * (x - xp)
end

lmo = FrankWolfe.KSparseLMO(5, 1.0)

const x00 = FrankWolfe.compute_extreme_point(lmo, rand(n))

function build_callback(trajectory_arr)
return function callback(state, active_set, args...)
return push!(trajectory_arr, (FrankWolfe.callback_state(state)..., length(active_set)))
end
end


trajectoryBPCG_standard = []
@time x, v, primal, dual_gap, _ = FrankWolfe.blended_pairwise_conditional_gradient(
f,
grad!,
lmo,
copy(x00),
max_iteration=k,
line_search=FrankWolfe.Shortstep(2.0),
verbose=true,
callback=build_callback(trajectoryBPCG_standard),
);

# Just projection quadratic
trajectoryBPCG_quadratic = []
as_quad = FrankWolfe.ActiveSetQuadratic([(1.0, copy(x00))], 2 * LinearAlgebra.I, -2xp)
@time x, v, primal, dual_gap, _ = FrankWolfe.blended_pairwise_conditional_gradient(
f,
grad!,
lmo,
as_quad,
max_iteration=k,
line_search=FrankWolfe.Shortstep(2.0),
verbose=true,
callback=build_callback(trajectoryBPCG_quadratic),
);

as_quad = FrankWolfe.ActiveSetQuadratic([(1.0, copy(x00))], 2 * LinearAlgebra.I, -2xp)

# with quadratic active set
trajectoryBPCG_quadratic_as = []
@time x, v, primal, dual_gap, _ = FrankWolfe.blended_pairwise_conditional_gradient(
f,
grad!,
lmo,
as_quad,
max_iteration=k,
line_search=FrankWolfe.Shortstep(2.0),
verbose=true,
callback=build_callback(trajectoryBPCG_quadratic_as),
);

as_quad_direct = FrankWolfe.ActiveSetQuadraticLinearSolve(
[(1.0, copy(x00))],
2 * LinearAlgebra.I,
-2xp,
MOI.instantiate(MOI.OptimizerWithAttributes(HiGHS.Optimizer, MOI.Silent() => true)),
)

# with LP acceleration
trajectoryBPCG_quadratic_direct = []
@time x, v, primal, dual_gap, _ = FrankWolfe.blended_pairwise_conditional_gradient(
f,
grad!,
lmo,
as_quad_direct,
max_iteration=k,
line_search=FrankWolfe.Shortstep(2.0),
verbose=true,
callback=build_callback(trajectoryBPCG_quadratic_direct),
);

as_quad_direct_generic = FrankWolfe.ActiveSetQuadraticLinearSolve(
[(1.0, copy(x00))],
2 * Diagonal(ones(length(xp))),
-2xp,
MOI.instantiate(MOI.OptimizerWithAttributes(HiGHS.Optimizer, MOI.Silent() => true)),
)

# with LP acceleration
trajectoryBPCG_quadratic_direct_generic = []
@time x, v, primal, dual_gap, _ = FrankWolfe.blended_pairwise_conditional_gradient(
f,
grad!,
lmo,
as_quad_direct_generic,
max_iteration=k,
line_search=FrankWolfe.Shortstep(2.0),
verbose=true,
callback=build_callback(trajectoryBPCG_quadratic_direct_generic),
);

as_quad_direct_basic_as = FrankWolfe.ActiveSetQuadraticLinearSolve(
FrankWolfe.ActiveSet([1.0], [copy(x00)], collect(x00)),
2 * LinearAlgebra.I,
-2xp,
MOI.instantiate(MOI.OptimizerWithAttributes(HiGHS.Optimizer, MOI.Silent() => true)),
)

# with LP acceleration
trajectoryBPCG_quadratic_noqas = []

@time x, v, primal, dual_gap, _ = FrankWolfe.blended_pairwise_conditional_gradient(
f,
grad!,
lmo,
as_quad_direct_basic_as,
max_iteration=k,
line_search=FrankWolfe.Shortstep(2.0),
verbose=true,
callback=build_callback(trajectoryBPCG_quadratic_noqas),
);


# Update the data and labels for plotting
data_trajectories = [
trajectoryBPCG_standard,
trajectoryBPCG_quadratic,
trajectoryBPCG_quadratic_as,
trajectoryBPCG_quadratic_direct,
trajectoryBPCG_quadratic_direct_generic,
trajectoryBPCG_quadratic_noqas,
]
labels_trajectories = [
"BPCG (Standard)",
"BPCG (Specific Direct)",
"AS_Quad",
"Reloaded",
"Reloaded_generic",
"Reloaded_noqas",
]

# Plot trajectories
plot_trajectories(data_trajectories, labels_trajectories, xscalelog=false)
146 changes: 146 additions & 0 deletions examples/blended_pairwise_with_direct_non-standard-quadratic.jl
Original file line number Diff line number Diff line change
@@ -0,0 +1,146 @@
#=
This example demonstrates the use of the Blended Pairwise Conditional Gradient algorithm
with direct solve steps for a quadratic optimization problem over a sparse polytope which is not standard quadratic.
The example showcases how the algorithm balances between:
- Pairwise steps for efficient optimization
- Periodic direct solves for handling the quadratic objective
- Lazy (approximate) linear minimization steps for improved iteration complexity
It also demonstrates how to set up custom callbacks for tracking algorithm progress.
=#

using FrankWolfe
using LinearAlgebra
using Random

import HiGHS
import MathOptInterface as MOI

include("../examples/plot_utils.jl")

n = Int(1e2)
k = 10000

# s = rand(1:100)
s = 10
@info "Seed $s"
Random.seed!(s)

A = let
A = randn(n, n)
A' * A
end
@assert isposdef(A) == true

const y = Random.rand(Bool, n) * 0.6 .+ 0.3

function f(x)
d = x - y
return dot(d, A, d)
end

function grad!(storage, x)
mul!(storage, A, x)
return mul!(storage, A, y, -2, 2)
end


# lmo = FrankWolfe.KSparseLMO(5, 1000.0)

## other LMOs to try
# lmo_big = FrankWolfe.KSparseLMO(100, big"1.0")
# lmo = FrankWolfe.LpNormLMO{Float64,5}(100.0)
# lmo = FrankWolfe.ProbabilitySimplexOracle(100.0);
lmo = FrankWolfe.UnitSimplexOracle(10000.0);

x00 = FrankWolfe.compute_extreme_point(lmo, rand(n))


function build_callback(trajectory_arr)
return function callback(state, active_set, args...)
return push!(trajectory_arr, (FrankWolfe.callback_state(state)..., length(active_set)))
end
end


trajectoryBPCG_standard = []
callback = build_callback(trajectoryBPCG_standard)

x, v, primal, dual_gap, _ = FrankWolfe.blended_pairwise_conditional_gradient(
f,
grad!,
lmo,
copy(x00),
max_iteration=k,
line_search=FrankWolfe.Adaptive(),
print_iter=k / 10,
memory_mode=FrankWolfe.InplaceEmphasis(),
verbose=true,
trajectory=true,
callback=callback,
);

active_set_quadratic_automatic = FrankWolfe.ActiveSetQuadraticLinearSolve(
[(1.0, copy(x00))],
grad!,
MOI.instantiate(MOI.OptimizerWithAttributes(HiGHS.Optimizer, MOI.Silent() => true)),
scheduler=FrankWolfe.LogScheduler(start_time=100, scaling_factor=1.2, max_interval=100),
)
trajectoryBPCG_quadratic_automatic = []
x, v, primal, dual_gap, _ = FrankWolfe.blended_pairwise_conditional_gradient(
f,
grad!,
lmo,
active_set_quadratic_automatic,
max_iteration=k,
verbose=true,
callback=build_callback(trajectoryBPCG_quadratic_automatic),
);

active_set_quadratic_automatic2 = FrankWolfe.ActiveSetQuadraticLinearSolve(
[(1.0, copy(x00))],
grad!,
MOI.instantiate(MOI.OptimizerWithAttributes(HiGHS.Optimizer, MOI.Silent() => true)),
scheduler=FrankWolfe.LogScheduler(start_time=10, scaling_factor=2),
)
trajectoryBPCG_quadratic_automatic2 = []
x, v, primal, dual_gap, _ = FrankWolfe.blended_pairwise_conditional_gradient(
f,
grad!,
lmo,
active_set_quadratic_automatic2,
max_iteration=k,
verbose=true,
callback=build_callback(trajectoryBPCG_quadratic_automatic2),
);


active_set_quadratic_automatic_standard = FrankWolfe.ActiveSetQuadraticLinearSolve(
FrankWolfe.ActiveSet([(1.0, copy(x00))]),
grad!,
MOI.instantiate(MOI.OptimizerWithAttributes(HiGHS.Optimizer, MOI.Silent() => true)),
scheduler=FrankWolfe.LogScheduler(start_time=10, scaling_factor=2),
)
trajectoryBPCG_quadratic_automatic_standard = []
x, v, primal, dual_gap, _ = FrankWolfe.blended_pairwise_conditional_gradient(
f,
grad!,
lmo,
active_set_quadratic_automatic_standard,
max_iteration=k,
verbose=true,
callback=build_callback(trajectoryBPCG_quadratic_automatic_standard),
);


dataSparsity = [
trajectoryBPCG_standard,
trajectoryBPCG_quadratic_automatic,
trajectoryBPCG_quadratic_automatic_standard,
]
labelSparsity = ["BPCG (Standard)", "AS_Quad", "AS_Standard"]


# Plot trajectories
plot_trajectories(dataSparsity, labelSparsity, xscalelog=false)
Loading

0 comments on commit 318d2b9

Please sign in to comment.