-
Notifications
You must be signed in to change notification settings - Fork 18
Commit
This commit does not belong to any branch on this repository, and may belong to a fork outside of the repository.
added open loop parameterization (#428)
* added open loop parameterization * added test * replace diagonal with sparse for 1.6 compat * import * dense matrix * relax lenght
- Loading branch information
1 parent
4a4540b
commit e5af3d6
Showing
2 changed files
with
107 additions
and
7 deletions.
There are no files selected for viewing
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
Original file line number | Diff line number | Diff line change |
---|---|---|
@@ -0,0 +1,91 @@ | ||
using FrankWolfe | ||
|
||
using Test | ||
using LinearAlgebra | ||
|
||
@testset "Open-loop FW on polytope" begin | ||
n = Int(1e2) | ||
k = Int(1e4) | ||
|
||
xp = ones(n) | ||
f(x) = norm(x - xp)^2 | ||
function grad!(storage, x) | ||
@. storage = 2 * (x - xp) | ||
end | ||
|
||
lmo = FrankWolfe.KSparseLMO(40, 1.0) | ||
|
||
x0 = FrankWolfe.compute_extreme_point(lmo, zeros(n)) | ||
|
||
res_2 = FrankWolfe.frank_wolfe( | ||
f, | ||
grad!, | ||
lmo, | ||
copy(x0), | ||
max_iteration=k, | ||
line_search=FrankWolfe.Agnostic(2), | ||
print_iter=k / 10, | ||
epsilon=1e-5, | ||
verbose=true, | ||
trajectory=true, | ||
) | ||
|
||
res_10 = FrankWolfe.frank_wolfe( | ||
f, | ||
grad!, | ||
lmo, | ||
copy(x0), | ||
max_iteration=k, | ||
line_search=FrankWolfe.Agnostic(10), | ||
print_iter=k / 10, | ||
epsilon=1e-5, | ||
verbose=true, | ||
trajectory=true, | ||
) | ||
|
||
@test res_2[4] ≤ 0.004799839951985518 | ||
@test res_10[4] ≤ 0.02399919272834694 | ||
|
||
# strongly convex set | ||
xp2 = 10 * ones(n) | ||
diag_term = 100 * rand(n) | ||
covariance_matrix = zeros(n,n) + LinearAlgebra.Diagonal(diag_term) | ||
lmo2 = FrankWolfe.EllipsoidLMO(covariance_matrix) | ||
|
||
f2(x) = norm(x - xp2)^2 | ||
function grad2!(storage, x) | ||
@. storage = 2 * (x - xp2) | ||
end | ||
|
||
x0 = FrankWolfe.compute_extreme_point(lmo2, randn(n)) | ||
|
||
res_2 = FrankWolfe.frank_wolfe( | ||
f2, | ||
grad2!, | ||
lmo2, | ||
copy(x0), | ||
max_iteration=k, | ||
line_search=FrankWolfe.Agnostic(2), | ||
print_iter=k / 10, | ||
epsilon=1e-5, | ||
verbose=true, | ||
trajectory=true, | ||
) | ||
|
||
res_10 = FrankWolfe.frank_wolfe( | ||
f2, | ||
grad2!, | ||
lmo2, | ||
copy(x0), | ||
max_iteration=k, | ||
line_search=FrankWolfe.Agnostic(10), | ||
print_iter=k / 10, | ||
epsilon=1e-5, | ||
verbose=true, | ||
trajectory=true, | ||
) | ||
|
||
@test length(res_10[end]) <= 8 | ||
@test length(res_2[end]) <= 73 | ||
|
||
end |