Skip to content

A collection of resources and papers on Diffusion Models and Score-based Models, a darkhorse in the field of Generative Models

License

Notifications You must be signed in to change notification settings

ZhendongWang6/Awesome-Diffusion-Models

 
 

Folders and files

NameName
Last commit message
Last commit date

Latest commit

 

History

39 Commits
 
 
 
 

Repository files navigation

Awesome License: MIT Made With Love

This repository contains a collection of resources and papers on Diffusion Models and Score-matching Models.

If there are any missing valuable resources or papers or any materials related to diffusion model, please do not hesitate to create or pull request to issues. I am happy to reflect them.

Contents

Resources

Introductory Posts

An introduction to Diffusion Probabilistic Models
Ayan Das
[Website]
04 Dec 2021

Introduction to deep generative modeling: Diffusion-based Deep Generative Models
Jakub Tomczak
[Website]
30 Aug 2021

What are Diffusion Models?
Lilian Weng
[Website]
11 Jul 2021

Diffusion Models as a kind of VAE
Angus Turner
[Website]
29 June 2021

Introductory Papers

A Connection Between Score Matching and Denoising Autoencoders
Pascal Vincent
Neural Computation 2011. [Paper]
7 Jul 2011

Bayesian Learning via Stochastic Gradient Langevin Dynamics
Max Welling, Yee Whye Teh
ICML 2011. [Paper] [Github]
28 June 2011

Papers

Image

Image Generation

Conditional Simulation Using Diffusion Schrödinger Bridges
Yuyang Shi, Valentin De Bortoli, George Deligiannidis, Arnaud Doucet
arXiv 2022. [Paper]
27 Feb 2022

Diffusion Causal Models for Counterfactual Estimation
Pedro Sanchez, Sotirios A. Tsaftaris
PMLR 2022. [Paper]
21 Feb 2022

Pseudo Numerical Methods for Diffusion Models on Manifolds
Luping Liu, Yi Ren, Zhijie Lin, Zhou Zhao
ICLR 2022. [Paper] [Github]
20 Feb 2022

Truncated Diffusion Probabilistic Models
Huangjie Zheng, Pengcheng He, Weizhu Chen, Mingyuan Zhou
arXiv 2022. [Paper]
19 Feb 2022

Understanding DDPM Latent Codes Through Optimal Transport
Valentin Khrulkov, Ivan Oseledets
arXiv 2022. [Paper]
14 Feb 2022

Learning Fast Samplers for Diffusion Models by Differentiating Through Sample Quality
Daniel Watson, William Chan, Jonathan Ho, Mohammad Norouzi
ICLR 2022. [Paper]
11 Feb 2022

Progressive Distillation for Fast Sampling of Diffusion Models
Tim Salimans, Jonathan Ho
ICLR 2022. [Paper]
1 Feb 2022

Analytic-DPM: an Analytic Estimate of the Optimal Reverse Variance in Diffusion Probabilistic Models
Fan Bao, Chongxuan Li, Jun Zhu, Bo Zhang
arXiv 2022. [Paper]
17 Jan 2022

DiffuseVAE: Efficient, Controllable and High-Fidelity Generation from Low-Dimensional Latents
Kushagra Pandey, Avideep Mukherjee, Piyush Rai, Abhishek Kumar
arXiv 2022. [Paper] [Github]
2 Jan 2022

Itô-Taylor Sampling Scheme for Denoising Diffusion Probabilistic Models using Ideal Derivatives
Hideyuki Tachibana, Mocho Go, Muneyoshi Inahara, Yotaro Katayama, Yotaro Watanabe
arXiv 2021. [Paper]
26 Dec 2021

GLIDE: Towards Photorealistic Image Generation and Editing with Text-Guided Diffusion Models
Alex Nichol1, Prafulla Dhariwal1, Aditya Ramesh1, Pranav Shyam, Pamela Mishkin, Bob McGrew, Ilya Sutskever, Mark Chen
arXiv 2021. [Paper]
20 Dec 2021

High-Resolution Image Synthesis with Latent Diffusion Models
Robin Rombach1, Andreas Blattmann1, Dominik Lorenz, Patrick Esser, Björn Ommer
arXiv 2021. [Paper] [Github]
20 Dec 2021

Heavy-tailed denoising score matching
Jacob Deasy, Nikola Simidjievski, Pietro Liò
arXiv 2021. [Paper]
17 Dec 2021

High Fidelity Visualization of What Your Self-Supervised Representation Knows About
Florian Bordes, Randall Balestriero, Pascal Vincent
arXiv 2021. [Paper]
16 Dec 2021

Tackling the Generative Learning Trilemma with Denoising Diffusion GANs
Zhisheng Xiao, Karsten Kreis, Arash Vahdat
arXiv 2021. [Paper] [Project]
15 Dec 2021

Score-Based Generative Modeling with Critically-Damped Langevin Diffusion
Tim Dockhorn, Arash Vahdat, Karsten Kreis
arXiv 2021. [Paper] [Project]
14 Dec 2021

More Control for Free! Image Synthesis with Semantic Diffusion Guidance
Xihui Liu, Dong Huk Park, Samaneh Azadi, Gong Zhang, Arman Chopikyan, Yuxiao Hu, Humphrey Shi, Anna Rohrbach, Trevor Darrell
arXiv 2021. [Paper]
10 Dec 2021

Global Context with Discrete Diffusion in Vector Quantised Modelling for Image Generation
Minghui Hu, Yujie Wang, Tat-Jen Cham, Jianfei Yang, P.N.Suganthan
arXiv 2021. [Paper]
3 Dec 2021

Diffusion Autoencoders: Toward a Meaningful and Decodable Representation
Konpat Preechakul, Nattanat Chatthee, Suttisak Wizadwongsa, Supasorn Suwajanakorn
arXiv 2021. [Paper] [Project]
30 Dec 2021

Conditional Image Generation with Score-Based Diffusion Models
Georgios Batzolis, Jan Stanczuk, Carola-Bibiane Schönlieb, Christian Etmann
arXiv 2021. [Paper]
26 Nov 2021

Unleashing Transformers: Parallel Token Prediction with Discrete Absorbing Diffusion for Fast High-Resolution Image Generation from Vector-Quantized Codes
Sam Bond-Taylor1, Peter Hessey1, Hiroshi Sasaki, Toby P. Breckon, Chris G. Willcocks
arXiv 2021. [Paper] [Github]
24 Nov 2021

Diffusion Normalizing Flow
Qinsheng Zhang, Yongxin Chen
NeurIPS 2021. [Paper] [Github]
14 Oct 2021

Denoising Diffusion Gamma Models
Eliya Nachmani1, Robin San Roman1, Lior Wolf
arXiv 2021. [Paper]
10 Oct 2021

Score-based Generative Neural Networks for Large-Scale Optimal Transport
Max Daniels, Tyler Maunu, Paul Hand
arXiv 2021. [Paper]
7 Oct 2021

Score-Based Generative Classifiers
Roland S. Zimmermann, Lukas Schott, Yang Song, Benjamin A. Dunn, David A. Klindt
arXiv 2021. [Paper]
1 Oct 2021

Bilateral Denoising Diffusion Models
Max W. Y. Lam, Jun Wang, Rongjie Huang, Dan Su, Dong Yu
arXiv 2021. [Paper] [Project]
26 Aug 2021

ImageBART: Bidirectional Context with Multinomial Diffusion for Autoregressive Image Synthesis
Patrick Esser1, Robin Rombach1, Andreas Blattmann1, Björn Ommer
NeurIPS 2021. [Paper] [Project]
19 Aug 2021

ILVR: Conditioning Method for Denoising Diffusion Probabilistic Models
Jooyoung Choi, Sungwon Kim, Yonghyun Jeong, Youngjune Gwon, Sungroh Yoon
ICCV 2021 (Oral). [Paper] [Github]
6 Aug 2021

SDEdit: Image Synthesis and Editing with Stochastic Differential Equations
Chenlin Meng, Yang Song, Jiaming Song, Jiajun Wu, Jun-Yan Zhu, Stefano Ermon
arXiv 2021. [Paper] [Project] [Github]
2 Aug 2021

Structured Denoising Diffusion Models in Discrete State-Spaces
Jacob Austin1, Daniel D. Johnson1, Jonathan Ho, Daniel Tarlow, Rianne van den Berg
arXiv 2021. [Paper]
7 Jul 2021

Variational Diffusion Models
Diederik P. Kingma1, Tim Salimans1, Ben Poole, Jonathan Ho
arXiv 2021. [Paper] [Github]
1 Jul 2021

Deep Generative Learning via Schrödinger Bridge
Gefei Wang, Yuling Jiao, Qian Xu, Yang Wang, Can Yang
ICML 2021. [Paper]
19 Jun 2021

Non Gaussian Denoising Diffusion Models
Eliya Nachmani1, Robin San Roman1, Lior Wolf
arXiv 2021. [Paper] [Project]
14 Jun 2021

D2C: Diffusion-Denoising Models for Few-shot Conditional Generation
Abhishek Sinha1, Jiaming Song1, Chenlin Meng, Stefano Ermon
arXiv 2021. [Paper] [Project] [Github]
12 Jun 2021

Score-based Generative Modeling in Latent Space
Arash Vahdat1, Karsten Kreis1, Jan Kautz
arXiv 2021. [Paper]
10 Jun 2021

Learning to Efficiently Sample from Diffusion Probabilistic Models
Daniel Watson, Jonathan Ho, Mohammad Norouzi, William Chan
arXiv 2021. [Paper]
7 Jun 2021

A Variational Perspective on Diffusion-Based Generative Models and Score Matching
Chin-Wei Huang, Jae Hyun Lim, Aaron Courville
ICML Workshop 2021. [Paper] [Github]
5 Jun 2021

Diffusion Schrödinger Bridge with Applications to Score-Based Generative Modeling
Valentin De Bortoli, James Thornton, Jeremy Heng, Arnaud Doucet
arXiv 2021. [Paper] [Project] [Github]
1 Jun 2021

On Fast Sampling of Diffusion Probabilistic Models
Zhifeng Kong, Wei Ping
ICML Workshop 2021. [Paper] [Github]
31 May 2021

Cascaded Diffusion Models for High Fidelity Image Generation
Jonathan Ho1, Chitwan Saharia1, William Chan, David J. Fleet, Mohammad Norouzi, Tim Salimans
arXiv 2021. [Paper] [Project]
30 May 2021

Gotta Go Fast When Generating Data with Score-Based Models
Alexia Jolicoeur-Martineau, Ke Li, Rémi Piché-Taillefer, Tal Kachman, Ioannis Mitliagkas
arXiv 2021. [Paper] [Github]
28 May 2021

Diffusion Models Beat GANs on Image Synthesis
Prafulla Dhariwal1, Alex Nichol1
arXiv 2021. [Paper] [Github]
11 May 2021

Image Super-Resolution via Iterative Refinement
Chitwan Saharia, Jonathan Ho, William Chan, Tim Salimans, David J. Fleet, Mohammad Norouzi
arXiv 2021. [Paper] [Project] [Github]
15 Apr 2021

Noise Estimation for Generative Diffusion Models
Robin San-Roman1, Eliya Nachmani1, Lior Wolf
arXiv 2021. [Paper]
6 Apr 2021

Improved Denoising Diffusion Probabilistic Models
Alex Nichol1, Prafulla Dhariwal1
ICLR 2021. [Paper] [Github]
18 Feb 2021

Maximum Likelihood Training of Score-Based Diffusion Models
Yang Song1, Conor Durkan1, Iain Murray, Stefano Ermon
arXiv 2021. [Paper]
22 Jan 2021

Learning Energy-Based Models by Diffusion Recovery Likelihood
Ruiqi Gao, Yang Song, Ben Poole, Ying Nian Wu, Diederik P. Kingma
ICLR 2021. [Paper] [Github]
15 Dec 2020

Score-Based Generative Modeling through Stochastic Differential Equations
Yang Song, Jascha Sohl-Dickstein, Diederik P. Kingma, Abhishek Kumar, Stefano Ermon, Ben Poole
ICLR 2021 (Oral). [Paper] [Github]
26 Nov 2020

Variational (Gradient) Estimate of the Score Function in Energy-based Latent Variable Models
Fan Bao, Kun Xu, Chongxuan Li, Lanqing Hong, Jun Zhu, Bo Zhang
ICML 2021. [Paper]
16 Oct 2020

Denoising Diffusion Implicit Models
Jiaming Song, Chenlin Meng, Stefano Ermon
ICLR 2021. [Paper] [Github]
6 Oct 2020

Adversarial score matching and improved sampling for image generation
Alexia Jolicoeur-Martineau1, Rémi Piché-Taillefer1, Rémi Tachet des Combes, Ioannis Mitliagkas
ICLR 2021. [Paper] [Github]
11 Sep 2020

Denoising Diffusion Probabilistic Models
Jonathan Ho, Ajay Jain, Pieter Abbeel
NeurIPS 2020. [Paper] [Github] [Github2]
19 Jun 2020

Improved Techniques for Training Score-Based Generative Models
Yang Song, Stefano Ermon
NeurIPS 2020. [Paper] [Github]
16 Jun 2020

Generative Modeling by Estimating Gradients of the Data Distribution
Yang Song, Stefano Ermon
NeurIPS 2019. [Paper] [Project] [Github]
12 Jul 2019

Neural Stochastic Differential Equations: Deep Latent Gaussian Models in the Diffusion Limit
Belinda Tzen, Maxim Raginsky
arXiv 2019. [Paper]
23 May 2019

Deep Unsupervised Learning using Nonequilibrium Thermodynamics
Jascha Sohl-Dickstein, Eric A. Weiss, Niru Maheswaranathan, Surya Ganguli
ICML 2015. [Paper] [Github]
2 Mar 2015

Image-to-Image Translation

Denoising Diffusion Restoration Models
Bahjat Kawar, Michael Elad, Stefano Ermon, Jiaming Song
arXiv 2022. [Paper]
27 Jan 2022

DiffuseMorph: Unsupervised Deformable Image Registration Along Continuous Trajectory Using Diffusion Models
Boah Kim, Inhwa Han, Jong Chul Ye
arXiv 2021. [Paper]
9 Dec 2021

Diffusion Autoencoders: Toward a Meaningful and Decodable Representation
Konpat Preechakul, Nattanat Chatthee, Suttisak Wizadwongsa, Supasorn Suwajanakorn
arXiv 2021. [Paper] [Project]
30 Dec 2021

Conditional Image Generation with Score-Based Diffusion Models
Georgios Batzolis, Jan Stanczuk, Carola-Bibiane Schönlieb, Christian Etmann
arXiv 2021. [Paper]
26 Nov 2021

ILVR: Conditioning Method for Denoising Diffusion Probabilistic Models
Jooyoung Choi, Sungwon Kim, Yonghyun Jeong, Youngjune Gwon, Sungroh Yoon
ICCV 2021 (Oral). [Paper] [Github]
6 Aug 2021

UNIT-DDPM: UNpaired Image Translation with Denoising Diffusion Probabilistic Models
Hiroshi Sasaki, Chris G. Willcocks, Toby P. Breckon
arXiv 2021. [Paper]
12 Apr 2021

Image Editing

Denoising Diffusion Restoration Models
Bahjat Kawar, Michael Elad, Stefano Ermon, Jiaming Song
arXiv 2022. [Paper]
27 Jan 2022

RePaint: Inpainting using Denoising Diffusion Probabilistic Models
Andreas Lugmayr, Martin Danelljan, Andres Romero, Fisher Yu, Radu Timofte, Luc Van Gool
arXiv 2022. [Paper] [Github]
24 Jan 2022

High-Resolution Image Synthesis with Latent Diffusion Models
Robin Rombach1, Andreas Blattmann1, Dominik Lorenz, Patrick Esser, Björn Ommer
arXiv 2021. [Paper] [Github]
20 Dec 2021

Tackling the Generative Learning Trilemma with Denoising Diffusion GANs
Zhisheng Xiao, Karsten Kreis, Arash Vahdat
arXiv 2021. [Paper] [Project]
15 Dec 2021

Come-Closer-Diffuse-Faster: Accelerating Conditional Diffusion Models for Inverse Problems through Stochastic Contraction
Hyungjin Chung, Byeongsu Sim, Jong Chul Ye
arXiv 2021. [Paper]
9 Dec 2021

Conditional Image Generation with Score-Based Diffusion Models
Georgios Batzolis, Jan Stanczuk, Carola-Bibiane Schönlieb, Christian Etmann
arXiv 2021. [Paper]
26 Nov 2021

Unleashing Transformers: Parallel Token Prediction with Discrete Absorbing Diffusion for Fast High-Resolution Image Generation from Vector-Quantized Codes
Sam Bond-Taylor1, Peter Hessey1, Hiroshi Sasaki, Toby P. Breckon, Chris G. Willcocks
arXiv 2021. [Paper] [Github]
24 Nov 2021

ILVR: Conditioning Method for Denoising Diffusion Probabilistic Models
Jooyoung Choi, Sungwon Kim, Yonghyun Jeong, Youngjune Gwon, Sungroh Yoon
ICCV 2021 (Oral). [Paper] [Github]
6 Aug 2021

SDEdit: Image Synthesis and Editing with Stochastic Differential Equations
Chenlin Meng, Yang Song, Jiaming Song, Jiajun Wu, Jun-Yan Zhu, Stefano Ermon
arXiv 2021. [Paper] [Project] [Github]
2 Aug 2021

Segmentation

Diffusion Models for Implicit Image Segmentation Ensembles
Julia Wolleb1, Robin Sandkühler1, Florentin Bieder, Philippe Valmaggia, Philippe C. Cattin
arXiv 2021. [Paper]
6 Dec 2021

Label-Efficient Semantic Segmentation with Diffusion Models
Dmitry Baranchuk, Ivan Rubachev, Andrey Voynov, Valentin Khrulkov, Artem Babenko
arXiv 2021. [Paper] [Github]
6 Dec 2021

SegDiff: Image Segmentation with Diffusion Probabilistic Models
Tomer Amit, Eliya Nachmani, Tal Shaharbany, Lior Wolf
arXiv 2021. [Paper]
1 Dec 2021

Super Resolution

Denoising Diffusion Restoration Models
Bahjat Kawar, Michael Elad, Stefano Ermon, Jiaming Song
arXiv 2022. [Paper]
27 Jan 2022

DiffuseVAE: Efficient, Controllable and High-Fidelity Generation from Low-Dimensional Latents
Kushagra Pandey, Avideep Mukherjee, Piyush Rai, Abhishek Kumar
arXiv 2022. [Paper] [Github]
2 Jan 2022

High-Resolution Image Synthesis with Latent Diffusion Models
Robin Rombach1, Andreas Blattmann1, Dominik Lorenz, Patrick Esser, Björn Ommer
arXiv 2021. [Paper] [Github]
20 Dec 2021

Come-Closer-Diffuse-Faster: Accelerating Conditional Diffusion Models for Inverse Problems through Stochastic Contraction
Hyungjin Chung, Byeongsu Sim, Jong Chul Ye
arXiv 2021. [Paper]
9 Dec 2021

Conditional Image Generation with Score-Based Diffusion Models
Georgios Batzolis, Jan Stanczuk, Carola-Bibiane Schönlieb, Christian Etmann
arXiv 2021. [Paper]
26 Nov 2021

S3RP: Self-Supervised Super-Resolution and Prediction for Advection-Diffusion Process
Chulin Wang, Kyongmin Yeo, Xiao Jin, Andres Codas, Levente J. Klein, Bruce Elmegreen
arXiv 2021. [Paper]
8 Nov 2021

Autoregressive Diffusion Models
Emiel Hoogeboom, Alexey A. Gritsenko, Jasmijn Bastings, Ben Poole, Rianne van den Berg, Tim Salimans
arXiv 2021. [Paper]
5 Oct 2021

ILVR: Conditioning Method for Denoising Diffusion Probabilistic Models
Jooyoung Choi, Sungwon Kim, Yonghyun Jeong, Youngjune Gwon, Sungroh Yoon
ICCV 2021 (Oral). [Paper] [Github]
6 Aug 2021

Cascaded Diffusion Models for High Fidelity Image Generation
Jonathan Ho1, Chitwan Saharia1, William Chan, David J. Fleet, Mohammad Norouzi, Tim Salimans
arXiv 2021. [Paper] [Project]
30 May 2021

SRDiff: Single Image Super-Resolution with Diffusion Probabilistic Models
Haoying Li, Yifan Yang, Meng Chang, Huajun Feng, Zhihai Xu, Qi Li, Yueting Chen
arXiv 2021. [Paper]
30 Apr 2021

Image Super-Resolution via Iterative Refinement
Chitwan Saharia, Jonathan Ho, William Chan, Tim Salimans, David J. Fleet, Mohammad Norouzi
arXiv 2021. [Paper] [Project] [Github]
15 Apr 2021

Text-to-Image

More Control for Free! Image Synthesis with Semantic Diffusion Guidance
Xihui Liu, Dong Huk Park, Samaneh Azadi, Gong Zhang, Arman Chopikyan, Yuxiao Hu, Humphrey Shi, Anna Rohrbach, Trevor Darrell
arXiv 2021. [Paper]
10 Dec 2021

Vector Quantized Diffusion Model for Text-to-Image Synthesis
Shuyang Gu, Dong Chen, Jianmin Bao, Fang Wen, Bo Zhang, Dongdong Chen, Lu Yuan, Baining Guo
arXiv 2021. [Paper] [Github]
29 Nov 2021

Blended Diffusion for Text-driven Editing of Natural Images
Omri Avrahami, Dani Lischinski, Ohad Fried
arXiv 2021. [Paper] [Github]
29 Nov 2021

DiffusionCLIP: Text-guided Image Manipulation Using Diffusion Models
Gwanghyun Kim, Jong Chul Ye
arXiv 2021. [Paper]
6 Oct 2021

Point Cloud

A Conditional Point Diffusion-Refinement Paradigm for 3D Point Cloud Completion
Zhaoyang Lyu, Zhifeng Kong, Xudong Xu, Liang Pan, Dahua Lin
arXiv 2021. [Paper]
7 Dec 2021

Score-Based Point Cloud Denoising
Shitong Luo, Wei Hu
arXiv 2021. [Paper] [Github]
23 Jul 2021

Diffusion Probabilistic Models for 3D Point Cloud Generation
Shitong Luo, Wei Hu
CVPR 2021. [Paper] [Github]
2 Mar 2021

Medical Imaging

Measurement-conditioned Denoising Diffusion Probabilistic Model for Under-sampled Medical Image Reconstruction
Yutong Xie, Quanzheng Li
arXiv 2022. [Paper] [Github]
5 Mar 2022

MRI Reconstruction via Data Driven Markov Chain with Joint Uncertainty Estimation
Guanxiong Luo, Martin Heide, Martin Uecker
arXiv 2022. [Paper]
3 Feb 2022

Unsupervised Denoising of Retinal OCT with Diffusion Probabilistic Model
Dewei Hu, Yuankai K. Tao, Ipek Oguz
arXiv 2022. [Paper] [Github]
27 Jan 2022

Come-Closer-Diffuse-Faster: Accelerating Conditional Diffusion Models for Inverse Problems through Stochastic Contraction
Hyungjin Chung, Byeongsu Sim, Jong Chul Ye
arXiv 2021. [Paper]
9 Dec 2021

Solving Inverse Problems in Medical Imaging with Score-Based Generative Models
Yang Song1, Liyue Shen1, Lei Xing, Stefano Ermon
NeurIPS Workshop 2021. [Paper]
15 Nov 2021

Score-based diffusion models for accelerated MRI
Hyungjin Chung, Jong chul Ye
arXiv 2021. [Paper]
8 Oct 2021

Audio

Audio Generation

Itô-Taylor Sampling Scheme for Denoising Diffusion Probabilistic Models using Ideal Derivatives
Hideyuki Tachibana, Mocho Go, Muneyoshi Inahara, Yotaro Katayama, Yotaro Watanabe
arXiv 2021. [Paper]
26 Dec 2021

Denoising Diffusion Gamma Models
Eliya Nachmani1, Robin San Roman1, Lior Wolf
arXiv 2021. [Paper]
10 Oct 2021

Variational Diffusion Models
Diederik P. Kingma, Tim Salimans, Ben Poole, Jonathan Ho
arXiv 2021. [Paper] [Github]
1 Jul 2021

CRASH: Raw Audio Score-based Generative Modeling for Controllable High-resolution Drum Sound Synthesis
Simon Rouard1, Gaëtan Hadjeres1
arXiv 2021. [Paper] [Project]
14 Jun 2021

PriorGrad: Improving Conditional Denoising Diffusion Models with Data-Driven Adaptive Prior
Sang-gil Lee, Heeseung Kim, Chaehun Shin, Xu Tan, Chang Liu, Qi Meng, Tao Qin, Wei Chen, Sungroh Yoon, Tie-Yan Liu
arXiv 2021. [Paper] [Project]
11 Jun 2021

DiffSinger: Singing Voice Synthesis via Shallow Diffusion Mechanism
Jinglin Liu1, Chengxi Li1, Yi Ren1, Feiyang Chen, Peng Liu, Zhou Zhao
arXiv 2021. [Paper] [Project] [Github]
6 May 2021

Symbolic Music Generation with Diffusion Models
Gautam Mittal, Jesse Engel, Curtis Hawthorne, Ian Simon
arXiv 2021. [Paper] [Code]
30 Mar 2021

DiffWave with Continuous-time Variational Diffusion Models
Zhifeng Kong, Wei Ping, Jiaji Huang, Kexin Zhao, Bryan Catanzaro
ICLR 2021 [Paper] [Project] [Github]
21 Sep 2020

DiffWave: A Versatile Diffusion Model for Audio Synthesis
Jascha Sohl-Dickstein, Eric A. Weiss, Niru Maheswaranathan, Surya Ganguli
ICML 2021 (Oral) [Paper] [Github] [Github2]
21 Sep 2020

WaveGrad: Estimating Gradients for Waveform Generation
Nanxin Chen, Yu Zhang, Heiga Zen, Ron J. Weiss, Mohammad Norouzi, William Chan
ICLR 2021. [Paper] [Project] [Github]
2 Sep 2020

Audio Conversion

DiffSVC: A Diffusion Probabilistic Model for Singing Voice Conversion
Songxiang Liu1, Yuewen Cao1, Dan Su, Helen Meng
arXiv 2021. [Paper] [Github]
28 May 2021

Audio Enhancement

Conditional Diffusion Probabilistic Model for Speech Enhancement
Yen-Ju Lu, Zhong-Qiu Wang, Shinji Watanabe, Alexander Richard, Cheng Yu, Yu Tsao
IEEE 2022. [Paper]
10 Feb 2022

A Study on Speech Enhancement Based on Diffusion Probabilistic Model
Yen-Ju Lu1, Yu Tsao1, Shinji Watanabe
arXiv 2021. [Paper]
25 Jul 2021

Restoring degraded speech via a modified diffusion model
Jianwei Zhang, Suren Jayasuriya, Visar Berisha
Interspeech 2021. [Paper]
22 Apr 2021

NU-Wave: A Diffusion Probabilistic Model for Neural Audio Upsampling
Junhyeok Lee, Seungu Han
Interspeech 2021. [Paper] [Project] [Github]
6 Apr 2021

Text-to-Speech

InferGrad: Improving Diffusion Models for Vocoder by Considering Inference in Training
Zehua Chen, Xu Tan, Ke Wang, Shifeng Pan, Danilo Mandic, Lei He, Sheng Zhao
arXiv 2022. [Paper]
8 Feb 2022

DiffGAN-TTS: High-Fidelity and Efficient Text-to-Speech with Denoising Diffusion GANs
Songxiang Liu, Dan Su, Dong Yu
arXiv 2022. [Paper]
28 Jan 2022

Guided-TTS:Text-to-Speech with Untranscribed Speech
Heeseung Kim, Sungwon Kim, Sungroh Yoon
arXiv 2021. [Paper]
32 Nov 2021

EdiTTS: Score-based Editing for Controllable Text-to-Speech
Jaesung Tae1, Hyeongju Kim1, Taesu Kim
arXiv 2021. [Paper]
6 Oct 2021

WaveGrad 2: Iterative Refinement for Text-to-Speech Synthesis
Nanxin Chen, Yu Zhang, Heiga Zen, Ron J. Weiss, Mohammad Norouzi, Najim Dehak, William Chan
arXiv 2021. [Paper] [Project] [Github] [Github2]
17 Jun 2021

Grad-TTS: A Diffusion Probabilistic Model for Text-to-Speech
Vadim Popov1, Ivan Vovk1, Vladimir Gogoryan, Tasnima Sadekova, Mikhail Kudinov
ICML 2021. [Paper] [Project] [Github]
13 May 2021

DiffSinger: Singing Voice Synthesis via Shallow Diffusion Mechanism
Jinglin Liu1, Chengxi Li1, Yi Ren1, Feiyang Chen, Peng Liu, Zhou Zhao
arXiv 2021. [Paper] [Project] [Github]
6 May 2021

Diff-TTS: A Denoising Diffusion Model for Text-to-Speech
Myeonghun Jeong, Hyeongju Kim, Sung Jun Cheon, Byoung Jin Choi, Nam Soo Kim
Interspeech 2021. [Paper]
3 Apr 2021

Miscellaneous

Adversarial Attack and Defense

TFDPM: Attack detection for cyber-physical systems with diffusion probabilistic models
Tijin Yan, Tong Zhou, Yufeng Zhan, Yuanqing Xia
arXiv 2021. [Paper]
20 Dec 2021

Adversarial purification with Score-based generative models
Jongmin Yoon, Sung Ju Hwang, Juho Lee
ICML 2021. [Paper] [Github]
11 Jun 2021

Graph Generation

Permutation Invariant Graph Generation via Score-Based Generative Modeling
Chenhao Niu, Yang Song, Jiaming Song, Shengjia Zhao, Aditya Grover, Stefano Ermon
AISTATS 2021. [Paper] [Github]
2 Mar 2020

Natural Language Processing

Zero-Shot Translation using Diffusion Models
Eliya Nachmani1, Shaked Dovrat1
arXiv 2021. [Paper]
2 Nov 2021

Time-Series

CSDI: Conditional Score-based Diffusion Models for Probabilistic Time Series Imputation
Yusuke Tashiro, Jiaming Song, Yang Song, Stefano Ermon
NeurIPS 2021. [Paper] [Github]
7 Jul 2021

ScoreGrad: Multivariate Probabilistic Time Series Forecasting with Continuous Energy-based Generative Models
Tijin Yan, Hongwei Zhang, Tong Zhou, Yufeng Zhan, Yuanqing Xia
arXiv 2021. [Paper] [Github]
18 Jun 2021

Autoregressive Denoising Diffusion Models for Multivariate Probabilistic Time Series Forecasting
Kashif Rasul, Calvin Seward, Ingmar Schuster, Roland Vollgraf
ICLR 2021. [Paper] [Github]
2 Feb 2021

Applications

GeoDiff: a Geometric Diffusion Model for Molecular Conformation Generation
Minkai Xu, Lantao Yu, Yang Song, Chence Shi, Stefano Ermon, Jian Tang
ICLR 2022. [Paper]
6 Mar 2022

Riemannian Score-Based Generative Modeling
Valentin De Bortoli1, Emile Mathieu1, Michael Hutchinson, James Thornton, Yee Whye Teh, Arnaud Doucet
arXiv 2022. [Paper]
6 Feb 2022

Deep Diffusion Models for Robust Channel Estimation
Marius Arvinte, Jonathan I Tamir
arXiv 2021. [Paper] [Github]
16 Nov 2021

Diffusion models for Handwriting Generation
Troy Luhman1, Eric Luhman1
arXiv 2020. [Paper] [Github]
13 Nov 2020

Deep diffusion-based forecasting of COVID-19 by incorporating network-level mobility information
Padmaksha Roy, Shailik Sarkar, Subhodip Biswas, Fanglan Chen, Zhiqian Chen, Naren Ramakrishnan, Chang-Tien Lu
arXiv 2021. [Paper]
9 Nov 2021

Crystal Diffusion Variational Autoencoder for Periodic Material Generation
Tian Xie1, Xiang Fu1, Octavian-Eugen Ganea1, Regina Barzilay, Tommi Jaakkola
arXiv 2021. [Paper]
12 Oct 2021

About

A collection of resources and papers on Diffusion Models and Score-based Models, a darkhorse in the field of Generative Models

Resources

License

Stars

Watchers

Forks

Releases

No releases published

Packages

No packages published