Skip to content

Commit

Permalink
ssib test
Browse files Browse the repository at this point in the history
  • Loading branch information
Zhongdao committed Nov 24, 2021
1 parent 44ae779 commit 3668b8c
Show file tree
Hide file tree
Showing 5 changed files with 278 additions and 5 deletions.
1 change: 1 addition & 0 deletions .gitignore
Original file line number Diff line number Diff line change
Expand Up @@ -9,6 +9,7 @@ config/tc128*
config/tlp*
config/trackingnet*
config/vfs*
config/ssib*

weights/
results/
Expand Down
133 changes: 133 additions & 0 deletions config/ssib_s3_womotion.yaml
Original file line number Diff line number Diff line change
@@ -0,0 +1,133 @@
common:
exp_name: ssib_s3_womotion

# Model related
model_type: ssib
remove_layers: ['layer4']
im_mean: [0.485, 0.456, 0.406]
im_std: [0.229, 0.224, 0.225]
nopadding: False
head_depth: -1
resume: 'weights/ssib_200ep.pth.tar'

# Misc
down_factor: 8
infer2D: True
workers: 4
gpu_id: 0
device: cuda

sot:
dataset: 'OTB2015'
dataroot: '/home/wangzd/datasets/GOT/OTB100/'
epoch_test: False

vos:
davisroot: '/home/wangzd/datasets/uvc/DAVIS/'
split: 'val'
temperature: 0.05
topk: 10
radius: 12
videoLen: 5
cropSize: -1
head_depth: -1
no_l2: False
long_mem: [0]
infer2D: False
norm_mask: False

mot:
obid: 'FairMOT'
mot_root: '/home/wangzd/datasets/MOT/MOT16'
feat_size: [4,10]
save_videos: True
save_images: False
test_mot16: False
track_buffer: 30
min_box_area: 200
nms_thres: 0.4
conf_thres: 0.5
iou_thres: 0.5
dup_iou_thres: 0.15
confirm_iou_thres: 0.7
img_size: [1088, 608]
prop_flag: False
use_kalman: True
asso_with_motion: False
motion_lambda: 1
motion_gated: False

mots:
obid: 'COSTA'
mots_root: '/home/wangzd/datasets/GOT/MOTS'
save_videos: False
save_images: True
test: False
track_buffer: 30
nms_thres: 0.4
conf_thres: 0.5
iou_thres: 0.5
prop_flag: False
max_mask_area: 200
dup_iou_thres: 0.15
confirm_iou_thres: 0.7
first_stage_thres: 0.7
feat_size: [4,10]
use_kalman: True
asso_with_motion: False
motion_lambda: 1
motion_gated: False

posetrack:
obid: 'lighttrack_MSRA152'
data_root: '/home/wangzd/datasets/GOT/Posetrack2018'
split: 'val'
track_buffer: 30
nms_thres: 0.4
conf_thres: 0.5
iou_thres: 0.5
frame_rate: 6
save_videos: False
save_images: True
prop_flag: False
feat_size: [4,10]
max_mask_area: 400
dup_iou_thres: 0.2
confirm_iou_thres: 0.6
first_stage_thres: 0.7
use_kalman: True
asso_with_motion: False
motion_lambda: 1
motion_gated: False
only_position: True

vis:
obid: 'MaskTrackRCNN'
data_root: '/home/wangzd/datasets/GOT/YoutubeVIS/'
split: 'val'
track_buffer: 30
nms_thres: 0.4
conf_thres: 0.5
iou_thres: 0.5
frame_rate: 6
save_videos: False
save_images: True
prop_flag: False
feat_size: [12,12]
max_mask_area: 1000
dup_iou_thres: 0.2
confirm_iou_thres: 0.6
first_stage_thres: 0.9
use_kalman: True
asso_with_motion: False
motion_lambda: 1
motion_gated: False









133 changes: 133 additions & 0 deletions config/ssib_s4_womotion.yaml
Original file line number Diff line number Diff line change
@@ -0,0 +1,133 @@
common:
exp_name: ssib_s4_womotion

# Model related
model_type: ssib
remove_layers: []
im_mean: [0.485, 0.456, 0.406]
im_std: [0.229, 0.224, 0.225]
nopadding: False
head_depth: -1
resume: 'weights/ssib_200ep.pth.tar'

# Misc
down_factor: 8
infer2D: True
workers: 4
gpu_id: 0
device: cuda

sot:
dataset: 'OTB2015'
dataroot: '/home/wangzd/datasets/GOT/OTB100/'
epoch_test: False

vos:
davisroot: '/home/wangzd/datasets/uvc/DAVIS/'
split: 'val'
temperature: 0.05
topk: 10
radius: 12
videoLen: 5
cropSize: -1
head_depth: -1
no_l2: False
long_mem: [0]
infer2D: False
norm_mask: False

mot:
obid: 'FairMOT'
mot_root: '/home/wangzd/datasets/MOT/MOT16'
feat_size: [4,10]
save_videos: True
save_images: False
test_mot16: False
track_buffer: 30
min_box_area: 200
nms_thres: 0.4
conf_thres: 0.5
iou_thres: 0.5
dup_iou_thres: 0.15
confirm_iou_thres: 0.7
img_size: [1088, 608]
prop_flag: False
use_kalman: True
asso_with_motion: False
motion_lambda: 1
motion_gated: False

mots:
obid: 'COSTA'
mots_root: '/home/wangzd/datasets/GOT/MOTS'
save_videos: False
save_images: True
test: False
track_buffer: 30
nms_thres: 0.4
conf_thres: 0.5
iou_thres: 0.5
prop_flag: False
max_mask_area: 200
dup_iou_thres: 0.15
confirm_iou_thres: 0.7
first_stage_thres: 0.7
feat_size: [4,10]
use_kalman: True
asso_with_motion: False
motion_lambda: 1
motion_gated: False

posetrack:
obid: 'lighttrack_MSRA152'
data_root: '/home/wangzd/datasets/GOT/Posetrack2018'
split: 'val'
track_buffer: 30
nms_thres: 0.4
conf_thres: 0.5
iou_thres: 0.5
frame_rate: 6
save_videos: False
save_images: True
prop_flag: False
feat_size: [4,10]
max_mask_area: 200
dup_iou_thres: 0.2
confirm_iou_thres: 0.6
first_stage_thres: 0.7
use_kalman: True
asso_with_motion: False
motion_lambda: 1
motion_gated: False
only_position: True

vis:
obid: 'MaskTrackRCNN'
data_root: '/home/wangzd/datasets/GOT/YoutubeVIS/'
split: 'val'
track_buffer: 30
nms_thres: 0.4
conf_thres: 0.5
iou_thres: 0.5
frame_rate: 6
save_videos: False
save_images: True
prop_flag: False
feat_size: [12,12]
max_mask_area: 1000
dup_iou_thres: 0.2
confirm_iou_thres: 0.6
first_stage_thres: 0.9
use_kalman: True
asso_with_motion: False
motion_lambda: 1
motion_gated: False









10 changes: 5 additions & 5 deletions eval.sh
Original file line number Diff line number Diff line change
Expand Up @@ -10,9 +10,9 @@ EXP_NAME=$1
CFG_PATH=config/${EXP_NAME}.yaml
SMRY_ROOT=results/summary/${EXP_NAME}
mkdir -p $SMRY_ROOT
CUDA_VISIBLE_DEVICES=$2 python -u test/test_sot_siamfc.py --config $CFG_PATH | tee results/summary/${EXP_NAME}/sot_siamfc.log 2>&1
CUDA_VISIBLE_DEVICES=$2 python -u test/test_sot_cfnet.py --config $CFG_PATH | tee results/summary/${EXP_NAME}/sot_cfnet.log 2>&1
#CUDA_VISIBLE_DEVICES=$2 python -u test/test_sot_siamfc.py --config $CFG_PATH | tee results/summary/${EXP_NAME}/sot_siamfc.log 2>&1
#CUDA_VISIBLE_DEVICES=$2 python -u test/test_sot_cfnet.py --config $CFG_PATH | tee results/summary/${EXP_NAME}/sot_cfnet.log 2>&1
CUDA_VISIBLE_DEVICES=$2 python -u test/test_vos.py --config $CFG_PATH | tee results/summary/${EXP_NAME}/vos.log 2>&1
CUDA_VISIBLE_DEVICES=$2 python -u test/test_mot.py --config $CFG_PATH | tee results/summary/${EXP_NAME}/mot.log 2>&1
CUDA_VISIBLE_DEVICES=$2 python -u test/test_mots.py --config $CFG_PATH | tee results/summary/${EXP_NAME}/mots.log 2>&1
CUDA_VISIBLE_DEVICES=$2 python -u test/test_posetrack.py --config $CFG_PATH | tee results/summary/${EXP_NAME}/posetrack.log 2>&1
#CUDA_VISIBLE_DEVICES=$2 python -u test/test_mot.py --config $CFG_PATH | tee results/summary/${EXP_NAME}/mot.log 2>&1
#CUDA_VISIBLE_DEVICES=$2 python -u test/test_mots.py --config $CFG_PATH | tee results/summary/${EXP_NAME}/mots.log 2>&1
#CUDA_VISIBLE_DEVICES=$2 python -u test/test_posetrack.py --config $CFG_PATH | tee results/summary/${EXP_NAME}/posetrack.log 2>&1
6 changes: 6 additions & 0 deletions model/model.py
Original file line number Diff line number Diff line change
Expand Up @@ -129,6 +129,12 @@ def make_encoder(args):
net_state = {k.replace('module.encoder_q.', ''):v for k,v in net_ckpt['state_dict'].items() \
if 'module.encoder_q' in k}
partial_load(net_state, net)
elif model_type == 'ssib':
net = resnet.resnet50(pretrained=False)
net_ckpt = torch.load(args.resume)
net_state = {k.replace('module.encoder.', ''):v for k,v in net_ckpt.items() \
if 'module.encoder' in k}
partial_load(net_state, net)
elif model_type == 'uvc':
net = load_uvc_model(args.resume)
elif model_type == 'timecycle':
Expand Down

0 comments on commit 3668b8c

Please sign in to comment.