-
Notifications
You must be signed in to change notification settings - Fork 18
Commit
This commit does not belong to any branch on this repository, and may belong to a fork outside of the repository.
- Loading branch information
0 parents
commit 0cd9118
Showing
12 changed files
with
318 additions
and
0 deletions.
There are no files selected for viewing
Loading
Sorry, something went wrong. Reload?
Sorry, we cannot display this file.
Sorry, this file is invalid so it cannot be displayed.
Loading
Sorry, something went wrong. Reload?
Sorry, we cannot display this file.
Sorry, this file is invalid so it cannot be displayed.
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
Original file line number | Diff line number | Diff line change |
---|---|---|
@@ -0,0 +1,37 @@ | ||
import numpy as np | ||
import cv2 | ||
|
||
|
||
class ReadImage: | ||
def __init__(self,imageName): | ||
self.imageName = imageName | ||
self.img = cv2.imread(self.imageName,0) | ||
self.unroll() | ||
|
||
def display(self): | ||
print self.img.shape | ||
cv2.imshow('1',self.img) | ||
cv2.waitKey(0) | ||
cv2.destroyAllWindows() | ||
|
||
def unroll(self): | ||
self.x,self.y = self.img.shape | ||
self.unrolled = self.img.reshape(self.x*self.y,1) | ||
print self.unrolled.shape | ||
#for i in xrange(0,50625): | ||
#print self.unrolled[i] | ||
|
||
def getData(self): | ||
return self.unrolled,self.x*self.y | ||
|
||
|
||
|
||
''' | ||
def main(): | ||
IMG = ReadImage('MRI.jpg') | ||
#IMG.unroll() | ||
#IMG.display() | ||
if __name__ == '__main__': | ||
main() | ||
''' |
Binary file not shown.
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
Original file line number | Diff line number | Diff line change |
---|---|---|
@@ -0,0 +1,281 @@ | ||
import numpy as np | ||
from reader import ReadImage | ||
import cv2 | ||
import math | ||
from scipy import ndimage | ||
|
||
|
||
|
||
class FCM(): | ||
def __init__(self,imageName,n_clusters,epsilon=0.05,max_iter=-1): | ||
self.m = 2 | ||
self.n_clusters = n_clusters | ||
self.max_iter = max_iter | ||
self.epsilon = epsilon | ||
|
||
read = ReadImage(imageName) | ||
self.X, self.numPixels = read.getData() | ||
self.X = self.X.astype(np.float) | ||
print "initial X:",self.X,self.X.shape | ||
|
||
self.U = [] | ||
for i in range(self.numPixels): | ||
index = i % n_clusters | ||
l = [ 0 for j in range(n_clusters) ] | ||
l[index] = 1 | ||
self.U.append(l) | ||
self.U = np.array(self.U).astype(np.float) | ||
self.U = self.U.reshape(self.numPixels,self.n_clusters) | ||
|
||
#self.U_new = np.zeros((self.numPixels,self.n_clusters)) | ||
self.U_new = np.copy(self.U) | ||
#self.h = np.zeros((self.n_clusters,self.numPixels)) | ||
|
||
self.C = [] | ||
self.C = [1,85,255] | ||
#self.C = [0,255] | ||
#self.C = [150,200] | ||
self.C = np.array(self.C).astype(np.float) | ||
self.C = self.C.reshape(self.n_clusters,1) | ||
print "initial C:\n",self.C,self.C.shape | ||
|
||
Lambda = 2 | ||
self.hesitation = np.zeros((self.numPixels,self.n_clusters)) | ||
for i in range(self.numPixels): | ||
for j in range(self.n_clusters): | ||
self.hesitation[i][j] = 1.0 - self.U[i][j] - ( (1 - self.U[i][j]) / (1 + (Lambda * self.U[i][j]) ) ) | ||
|
||
print self.hesitation | ||
|
||
|
||
|
||
def update_U(self): | ||
for i in range(self.numPixels): | ||
for j in range(self.n_clusters): | ||
sumation = 0 | ||
for k in range(self.n_clusters): | ||
sumation += ( self.eucledian_dist(self.X[i],self.C[j]) / self.eucledian_dist(self.X[i],self.C[k]) ) ** (2 / (self.m-1) ) | ||
self.U[i][j] = 1 / sumation | ||
|
||
print "U : ",self.U | ||
|
||
def update_C(self): | ||
for j in range(self.n_clusters): | ||
num_sum = 0 | ||
den_sum = 0 | ||
for i in range(self.numPixels): | ||
num_sum += np.dot((self.U[i][j] ** self.m),self.X[i]) | ||
den_sum += self.U[i][j] ** self.m | ||
self.C[j] = np.divide(num_sum,den_sum) | ||
|
||
print "C : ",self.C | ||
|
||
def calculate_h(self): | ||
#self.h = np.zeros((self.n_clusters,self.numPixels)) | ||
h = np.zeros((self.n_clusters,self.numPixels)) | ||
u_rolled = np.zeros((self.numPixels ** 0.5,self.numPixels ** 0.5)) | ||
kernel = np.ones((5,5)) | ||
#kernel[2][2] = 4 | ||
#kernel[2][1] = kernel[1][2] = kernel[3][2] = kernel[2][3] = 2 | ||
#print self.U.transpose().shape,self.U.transpose()[0].shape | ||
for i in range(self.n_clusters): | ||
u_rolled = self.U.transpose()[i].reshape(self.numPixels ** 0.5,self.numPixels ** 0.5) | ||
print u_rolled.shape | ||
h_rolled = ndimage.convolve(u_rolled,kernel,mode='constant',cval=0.0) | ||
#self.h[i] = h_temp.reshape(1,self.numPixels) | ||
h[i] = h_rolled.reshape(1,self.numPixels) | ||
|
||
h = h.transpose() | ||
#self.h = self.h.transpose() | ||
print "\n",h,h.shape | ||
return h | ||
|
||
def compute_intuitionistic_U(self): | ||
Lambda = 0.5 | ||
for i in range(self.numPixels): | ||
for j in range(self.n_clusters): | ||
self.hesitation[i][j] = 1.0 - self.U[i][j] - ( (1 - self.U[i][j]) / (1 + (Lambda * self.U[i][j]) ) ) | ||
int_U = np.add(self.U,self.hesitation) | ||
self.U = np.copy(int_U) | ||
|
||
|
||
def computeNew_U(self): | ||
p = 1 | ||
q = 2 | ||
self.h = self.calculate_h() | ||
for j in range(self.numPixels): | ||
numer = 0.0 | ||
denom = 0.0 | ||
for i in range(self.n_clusters): | ||
numer = (self.U[j][i] ** p) * (self.h[j][i] ** q) | ||
for k in range(self.n_clusters): | ||
denom += (self.U[j][k] ** p) * (self.h[j][k] ** q) | ||
self.U_new[j][i] = numer/denom | ||
|
||
self.U = np.copy(self.U_new) | ||
|
||
def calculate_DB_score(self): | ||
sigma = np.zeros((3,1)).astype(np.float) | ||
count = np.zeros((3,1)) | ||
result = np.zeros(shape=(self.numPixels,1)) | ||
result = np.argmax(self.U, axis = 1) | ||
#self.Y = np.copy(self.X.astype(np.uint8)) | ||
#for i in xrange(self.numPixels): | ||
# self.Y[i] = self.C[self.result[i]].astype(np.int) | ||
|
||
for i in range(self.n_clusters): | ||
sigma[i] = 0 | ||
for j in range(self.numPixels): | ||
if result[j] == i: | ||
count[i] += 1 | ||
sigma[i] += self.eucledian_dist(self.C[i],self.X[j]) | ||
sigma[i] = sigma[i]/count[i] | ||
|
||
#print result,sigma,count | ||
|
||
R_01 = (sigma[0] + sigma[1])/self.eucledian_dist(self.C[0],self.C[1]) | ||
R_02 = (sigma[0] + sigma[2])/self.eucledian_dist(self.C[0],self.C[2]) | ||
R_12 = (sigma[1] + sigma[2])/self.eucledian_dist(self.C[1],self.C[2]) | ||
|
||
D0 = max(R_01,R_02) | ||
D1 = max(R_01,R_12) | ||
D2 = max(R_02,R_12) | ||
|
||
DB_score = (D0 + D1 + D2)/self.n_clusters | ||
print "DB_score: ",DB_score | ||
|
||
def calculate_D_score(self): | ||
sigma = np.zeros((3,1)).astype(np.float) | ||
count = np.zeros((3,1)) | ||
result = np.zeros(shape=(self.numPixels,1)) | ||
result = np.argmax(self.U, axis = 1) | ||
|
||
for i in range(self.n_clusters): | ||
sigma[i] = 0 | ||
for j in range(self.numPixels): | ||
if result[j] == i: | ||
count[i] += 1 | ||
sigma[i] += self.eucledian_dist(self.C[i],self.X[j]) | ||
sigma[i] = sigma[i]/count[i] | ||
|
||
denom = max(sigma[0],sigma[1],sigma[2]) | ||
#print denom | ||
|
||
d_01 = self.eucledian_dist(self.C[0],self.C[1]) | ||
d_02 = self.eucledian_dist(self.C[0],self.C[2]) | ||
d_12 = self.eucledian_dist(self.C[1],self.C[2]) | ||
|
||
D_01 = d_01/denom | ||
D_02 = d_02/denom | ||
D_12 = d_12/denom | ||
|
||
D_score = min(D_01,D_02,D_12) | ||
print "D_score: ",D_score | ||
|
||
|
||
|
||
def calculate_scores(self): | ||
self.Vpc = 0.0 | ||
sum_j = 0.0 | ||
for j in range(self.numPixels): | ||
sum_i = 0.0 | ||
for i in range(self.n_clusters): | ||
sum_i += self.U[j][i] ** 2 | ||
#print "sum_i: ",sum_i | ||
sum_j += sum_i | ||
#print "sum_j: ",sum_j | ||
self.Vpc = sum_j/self.numPixels | ||
print "VPC: ",self.Vpc | ||
|
||
self.Vpe = 0.0 | ||
sum_j = 0.0 | ||
for j in range(self.numPixels): | ||
sum_i = 0 | ||
for j in range(self.n_clusters): | ||
sum_i += self.U[j][i] * math.log(self.U[j][i]) | ||
sum_j += sum_i | ||
self.Vpe = -1 * (sum_j/self.numPixels) | ||
print "VPE: ",self.Vpe | ||
|
||
self.Vxb = 0.0 | ||
sum_j = 0.0 | ||
for j in range(self.numPixels): | ||
sum_i = 0 | ||
for i in range(self.n_clusters): | ||
sum_i += self.U[j][i] * (self.eucledian_dist(self.X[j],self.C[i]) ** 2) | ||
sum_j += sum_i | ||
numer = 1 * sum_j | ||
#dist = [ self.eucledian_dist(self.C[0],self.C[1]) ** 2, self.eucledian_dist(self.C[1],self.C[2]) ** 2 ,self.eucledian_dist(self.C[0],self.C[2]) ** 2] | ||
#denom = self.numPixels * min(dist) | ||
denom = self.numPixels * ( self.eucledian_dist(self.C[0],self.C[1]) ** 2 ) | ||
self.Vxb = numer/denom | ||
print "VXB: ",self.Vxb | ||
|
||
self.calculate_DB_score() | ||
self.calculate_D_score() | ||
|
||
|
||
|
||
def eucledian_dist(self,a,b): | ||
return np.linalg.norm(a-b) | ||
|
||
def form_clusters(self): | ||
d = 100 | ||
if self.max_iter != -1: | ||
for i in range(self.max_iter): | ||
print "loop : " , int(i) | ||
self.update_C() | ||
#temp = np.copy(self.U) | ||
temp = np.copy(self.U_new) | ||
self.update_U() | ||
self.compute_intuitionistic_U() | ||
self.computeNew_U() | ||
d = sum(abs(sum(self.U_new - temp))) | ||
print d | ||
self.segmentImage(i) | ||
if d < self.epsilon: | ||
break | ||
else: | ||
i = 0 | ||
while d > self.epsilon: | ||
self.update_C() | ||
temp = np.copy(self.U) | ||
self.update_U() | ||
d = sum(abs(sum(self.U - temp))) | ||
print "loop : " , int(i) | ||
print d | ||
self.segmentImage(i) | ||
i += 1 | ||
|
||
|
||
def segmentImage(self,image_count): | ||
self.result = np.zeros(shape=(self.numPixels,1)) | ||
self.result = np.argmax(self.U, axis = 1) | ||
self.Y = np.copy(self.X.astype(np.uint8)) | ||
print self.Y.shape | ||
#a = raw_input("press any key!") | ||
for i in xrange(self.numPixels): | ||
self.Y[i] = self.C[self.result[i]].astype(np.int) | ||
#print self.Y[i] | ||
self.Y = self.Y.reshape(self.numPixels ** 0.5,self.numPixels ** 0.5) | ||
#self.Y = self.Y.reshape(75,75) | ||
print self.Y,self.Y.shape,self.Y.dtype | ||
cv2.imwrite('output_sifcm/' + str(image_count) + '.jpg' , self.Y) | ||
image_count += 1 | ||
#cv2.imshow('image',self.Y) | ||
#cv2.waitKey(0) | ||
#cv2.destroyAllWindows() | ||
|
||
|
||
|
||
def main(): | ||
#cluster = FCM('afcm1.jpg',2,0.01,300) | ||
#cluster = FCM('MRI.jpg',3,0.00005,100) | ||
cluster = FCM('t1_mri_scaled.jpg',3,0.05,100) | ||
cluster.form_clusters() | ||
cluster.calculate_scores() | ||
#cluster.calculate_h() | ||
#cluster.show_result() | ||
|
||
if __name__ == '__main__': | ||
main() |
Loading
Sorry, something went wrong. Reload?
Sorry, we cannot display this file.
Sorry, this file is invalid so it cannot be displayed.
Loading
Sorry, something went wrong. Reload?
Sorry, we cannot display this file.
Sorry, this file is invalid so it cannot be displayed.
Loading
Sorry, something went wrong. Reload?
Sorry, we cannot display this file.
Sorry, this file is invalid so it cannot be displayed.