Skip to content

A project to classify images as either containing melanoma or not

License

Notifications You must be signed in to change notification settings

adam-r-kowalski/melanoma-classifier

Folders and files

NameName
Last commit message
Last commit date

Latest commit

 

History

51 Commits
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Repository files navigation

melanoma-classifier

Author

Adam Kowalski

Copyright

Copyright © 2018 Adam Kowalski

Contact Me

[email protected]

[email protected]

Description

This project will try to look at medical images and determine whether or not they contain melanoma. Through the use of deep learning, I will build models that try to extract features from the images so that I can correctly classify the images.

Reproducability of results is a huge concern in the field of deep learning, so I will use docker to ensure environmental differences between developers are kept to a minimum. There will be containers for getting the dataset, as well as building, training and evaluating models.

Another cruicial aspect of developing models is tuning hyper parameters. It is important to change them in a controlled way, so that you can understand which models performed better and get an intution into how to change them in the future so that they may keep getting better.

Bug Tracker

https://github.com/adam-r-kowalski/melanoma-classifier/issues

Usage

Clone the repo

git clone https://github.com/adam-r-kowalski/melanoma-classifier.git
cd melanoma-classifier

Install Docker

In order to ensure no environmental differences between developers, docker is used. Follow the installation instructions for your platform.

Because we want to take advantage of the GPU to make training much faster, we need to also install nvidia-docker.

Download the data

This service will download the dataset from The International Skin Imaging Collaboration who generously provide thousands of examples of various skin related diseases.

docker-compose -f data-downloader/docker-compose.yml up

Label the data

This service will take our data and create an efficient binary representation which contains both the images as well as the labels.

docker-compose -f data-labeler/docker-compose.yml up

Partition the data

This service will take our dataset and partition it into batches of 1000 as well as ensure that we have an even distribution of melanoma to non melanoma images

docker-compose -f data-partitioner/docker-compose.yml up

Launch the webapp

This service will allow you to construct and train models

docker-compose -f webapp/docker-compose.yml up

License

This code is available under the "Apache License 2.0". Please see the file COPYING in this distribution for license terms.

About

A project to classify images as either containing melanoma or not

Resources

License

Stars

Watchers

Forks

Releases

No releases published

Packages

No packages published