Skip to content

Commit

Permalink
Merge pull request #36 from adamlilith/winterIsComing
Browse files Browse the repository at this point in the history
Update README.md
  • Loading branch information
adamlilith authored Jan 2, 2024
2 parents 054cb42 + cffa99d commit 41fcd79
Showing 1 changed file with 26 additions and 21 deletions.
47 changes: 26 additions & 21 deletions README.md
Original file line number Diff line number Diff line change
Expand Up @@ -10,49 +10,54 @@


<img align="right" src="statisfactory.png" height="223"/>
Statistical tools and helper functions, including back-transformation of principal component (PCA) scores, creatiion of all possible formulae from a set of terms while respecting marginality and user-specified constraints, stratified sampling, and 2-D histograms.

Statistical tools and helper functions, including back-transformation of principal component (PCA) scores, creation of all possible formulae from a set of terms while respecting marginality and user-specified constraints, stratified sampling, and 2-D histograms. You can install this package the usual way from <a href="https://cran.r-project.org/package=statisfactory">`CRAN`</a> or the development version (plus dependency <a href="https://cran.r-project.org/package=omnibus">`omnibus`</a>) using:
You can install this package the usual way from <a href="https://cran.r-project.org/package=statisfactory">`CRAN`</a>:

`remotes::install_github('adamlilith/omnibus', dependencies=TRUE)`
`remotes::install_github('adamlilith/statisfactory', dependencies=TRUE)`
`install.packages('statisfactory')`

Alternatively, you can install the development version (plus dependency <a href="https://cran.r-project.org/package=omnibus">`omnibus`</a>) using:

`remotes::install_github('adamlilith/omnibus')`
`remotes::install_github('adamlilith/statisfactory')`

You may need to install package `remotes` first.

### Functions ###
## Utilities ##
* `makeFormulae`: Make all possible formula
* `makeFormulae()`: Make all possible formula

## Distance ##
* `euclid`: Euclidean distance
* `fuzzyJaccard`: Fuzzy Jaccard index for non-binary values
* `euclid()`: Euclidean distance
* `fuzzyJaccard()`: Fuzzy Jaccard index for non-binary values

## Calculations ##
* `geoMean`: Geometric mean
* `invLogitAdj`: Probit transform robust to 0's or 1's
* `logitAdj`: Logit transform robust to 0's and 1's
* `mmode`: Modal value
* `psum`: Element-wise sum (like pmin and pmax)
* `se`: Standard error of the mean
* `geoMean()`: Geometric mean
* `invLogitAdj()`: Probit transform robust to 0's or 1's
* `logitAdj()`: Logit transform robust to 0's and 1's
* `mmode()`: Modal value
* `psum()`: Element-wise sum (like `pmin()` and `pmax()`)
* `se()`: Standard error of the mean

## Data transformation ##
* `art`: Aligned rank transform for using ANOVAs on rank data
* `rankMulti`: Rank values by multiple tie-breaking criteria
* `art()`: Aligned rank transform for using ANOVAs on rank data
* `rankMulti()`: Rank values by multiple tie-breaking criteria

## Principal component analysis (PCA) ##
*`backTransPCA`: "Back-transform" PCA scores to their original values
*`backTransPCA()`: "Back-transform" PCA scores to their original values

## Geometry
* `countConnected`: Count number of contiguous "blocks" of cells
* `countConnected()`: Count number of contiguous "blocks" of cells

## Sampling ##
* `sampleAcross`: Permute values across two vectors or columns in two data frames or matrices
* `sampleStrat`: Sample values stratified by one or more other variables
* `sampleAcross()`: Permute values across two vectors or columns in two data frames or matrices
* `sampleStrat()`: Sample values stratified by one or more other variables

## Statistics ##
* `nagelR2`: Nagelkerge's / Craig & Uhler's R2
* `nagelR2()`: Nagelkerge's / Craig & Uhler's R2

## Histograms ##
* `hist2d`: Two-dimensional histogram
* `histOverlap`: Histogram with overlapping or arbitrary bins
* `hist2d()`: Two-dimensional histogram
* `histOverlap()`: Histogram with overlapping or arbitrary bins

Adam B. Smith

0 comments on commit 41fcd79

Please sign in to comment.