-
Notifications
You must be signed in to change notification settings - Fork 899
Commit
This commit does not belong to any branch on this repository, and may belong to a fork outside of the repository.
Add Scikit Learn integration tests with FDS (#2387)
- Loading branch information
1 parent
de023a1
commit c19a8d6
Showing
2 changed files
with
109 additions
and
0 deletions.
There are no files selected for viewing
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
Original file line number | Diff line number | Diff line change |
---|---|---|
@@ -0,0 +1,15 @@ | ||
[build-system] | ||
requires = ["poetry-core>=1.4.0"] | ||
build-backend = "poetry.core.masonry.api" | ||
|
||
[tool.poetry] | ||
name = "fds-e2e-sklearn" | ||
version = "0.1.0" | ||
description = "Flower Datasets with scikit-learn" | ||
authors = ["The Flower Authors <[email protected]>"] | ||
|
||
[tool.poetry.dependencies] | ||
python = "^3.8" | ||
flwr-datasets = { path = "./../../", extras = ["vision"] } | ||
scikit-learn = "^1.2.0" | ||
parameterized = "==0.9.0" |
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
Original file line number | Diff line number | Diff line change |
---|---|---|
@@ -0,0 +1,94 @@ | ||
import unittest | ||
|
||
import numpy as np | ||
from parameterized import parameterized_class | ||
from sklearn.linear_model import LogisticRegression | ||
from sklearn.preprocessing import StandardScaler | ||
|
||
from flwr_datasets import FederatedDataset | ||
|
||
|
||
# Using parameterized testing, two different sets of preprocessing: | ||
# 1. Without scaling. | ||
# 2. With standard scaling. | ||
@parameterized_class( | ||
[ | ||
{"dataset_name": "mnist", "preprocessing": None}, | ||
{"dataset_name": "mnist", "preprocessing": StandardScaler()}, | ||
] | ||
) | ||
class FdsWithSKLearn(unittest.TestCase): | ||
"""Test Flower Datasets with Scikit-learn's Logistic Regression.""" | ||
|
||
dataset_name = "" | ||
preprocessing = None | ||
|
||
def _get_partition_data(self): | ||
"""Retrieve partition data.""" | ||
partition_id = 0 | ||
fds = FederatedDataset(dataset=self.dataset_name, partitioners={"train": 10}) | ||
partition = fds.load_partition(partition_id, "train") | ||
partition.set_format("numpy") | ||
partition_train_test = partition.train_test_split(test_size=0.2) | ||
X_train, y_train = partition_train_test["train"]["image"], partition_train_test[ | ||
"train"]["label"] | ||
X_test, y_test = partition_train_test["test"]["image"], partition_train_test[ | ||
"test"]["label"] | ||
X_train = X_train.reshape(-1, 28 * 28) | ||
X_test = X_test.reshape(-1, 28 * 28) | ||
if self.preprocessing: | ||
self.preprocessing.fit(X_train) | ||
X_train = self.preprocessing.transform(X_train) | ||
X_test = self.preprocessing.transform(X_test) | ||
|
||
return X_train, X_test, y_train, y_test | ||
|
||
def test_data_shape(self): | ||
"""Test if the data shape is maintained after preprocessing.""" | ||
X_train, _, _, _ = self._get_partition_data() | ||
self.assertEqual(X_train.shape, (4_800, 28 * 28)) | ||
|
||
def test_X_train_type(self): | ||
"""Test if the data type is correct.""" | ||
X_train, _, _, _ = self._get_partition_data() | ||
self.assertIsInstance(X_train, np.ndarray) | ||
|
||
def test_y_train_type(self): | ||
"""Test if the data type is correct.""" | ||
_, _, y_train, _ = self._get_partition_data() | ||
self.assertIsInstance(y_train, np.ndarray) | ||
|
||
def test_X_test_type(self): | ||
"""Test if the data type is correct.""" | ||
_, X_test, _, _ = self._get_partition_data() | ||
self.assertIsInstance(X_test, np.ndarray) | ||
|
||
def test_y_test_type(self): | ||
"""Test if the data type is correct.""" | ||
_, _, _, y_test = self._get_partition_data() | ||
self.assertIsInstance(y_test, np.ndarray) | ||
|
||
def test_train_classifier(self): | ||
"""Test if the classifier trains without errors.""" | ||
X_train, X_test, y_train, y_test = self._get_partition_data() | ||
try: | ||
clf = LogisticRegression() | ||
clf.fit(X_train, y_train) | ||
except Exception as e: | ||
self.fail(f"Fitting Logistic Regression raised {type(e)} unexpectedly!") | ||
|
||
def test_predict_from_classifier(self): | ||
"""Test if the classifier predicts without errors.""" | ||
X_train, X_test, y_train, y_test = self._get_partition_data() | ||
clf = LogisticRegression() | ||
clf.fit(X_train, y_train) | ||
try: | ||
_ = clf.predict(X_test) | ||
except Exception as e: | ||
self.fail( | ||
f"Predicting using Logistic Regression model raised {type(e)} " | ||
f"unexpectedly!") | ||
|
||
|
||
if __name__ == '__main__': | ||
unittest.main() |