Skip to content

Commit

Permalink
Merge branch 'dev'
Browse files Browse the repository at this point in the history
  • Loading branch information
adrienemery committed Nov 26, 2018
2 parents e06e839 + dfd0096 commit 29898a2
Show file tree
Hide file tree
Showing 37 changed files with 2,502 additions and 288 deletions.
1 change: 1 addition & 0 deletions .gitignore
Original file line number Diff line number Diff line change
Expand Up @@ -7,5 +7,6 @@ __pycache__/
config.ini
*.sqlite3
*.pyc
*.egg-info/

auv_control_pi/bin/*
2 changes: 1 addition & 1 deletion Dockerfile
Original file line number Diff line number Diff line change
@@ -1,5 +1,5 @@
FROM python:3.6
ENV PYTHONUNBUFFERED
ENV PYTHONUNBUFFERED 1
RUN mkdir /code
WORKDIR /code
ADD . /code/
Expand Down
6 changes: 6 additions & 0 deletions Makefile
Original file line number Diff line number Diff line change
@@ -0,0 +1,6 @@

dev:
docker-compose -f docker-compose-dev.yml up

dev-stop:
docker-compose -f docker-compose-dev.yml down
303 changes: 303 additions & 0 deletions auv_control_pi/components/ahrs.py
Original file line number Diff line number Diff line change
@@ -0,0 +1,303 @@
"""
This is adapted from https://github.com/micropython-IMU/micropython-fusion
Basically things have been renamed to AHRS naming scheme, pep8 improvements
and adjusted to work with CPython instead of MicroPython.
Supports 6 and 9 degrees of freedom sensors. Tested with InvenSense MPU-9150 9DOF sensor.
Source https://github.com/xioTechnologies/Open-Source-AHRS-With-x-IMU.git
also https://github.com/kriswiner/MPU-9250.git
Ported to Python. Integrator timing adapted for pyboard.
User should repeatedly call the appropriate 6 or 9 DOF update method and extract heading pitch and roll angles as
required.
Calibrate method:
The sensor should be slowly rotated around each orthogonal axis while this runs.
arguments:
getxyz must return current magnetometer (x, y, z) tuple from the sensor
stopfunc (responding to time or user input) tells it to stop
waitfunc provides an optional delay between readings to accommodate hardware or to avoid hogging
the CPU in a threaded environment. It sets magbias to the mean values of x,y,z
"""
import os
import asyncio
import logging
from ..wamp import ApplicationSession, rpc

PI = os.getenv('PI', False)

if PI:
from navio.lsm9ds1 import LSM9DS1

from ..config import config
from math import sqrt, atan2, asin, degrees, radians
from ..utils import micros, elapsed_micros, clamp_angle

logger = logging.getLogger(__name__)
SIMULATION = os.getenv('SIMULATION', False)


class AHRS(ApplicationSession):
"""Class provides sensor fusion allowing heading, pitch and roll to be extracted.
This uses the Madgwick algorithm.
The update method must be called peiodically.
"""

name = 'AHRS'

def __init__(self, *args, **kwargs):
super().__init__(*args, **kwargs)
if not SIMULATION:
self.imu = LSM9DS1()
self.imu.initialize()
self.declination = config.declination
self.board_offset = config.board_offset
# local magnetic bias factors: set from calibration
self.magbias = (config.magbias_x, config.magbias_y, config.magbias_z)
self.start_time = None # Time between updates
self.q = [1.0, 0.0, 0.0, 0.0] # vector to hold quaternion
gyro_meas_error = radians(270) # Original code indicates this leads to a 2 sec response time
self.beta = sqrt(3.0 / 4.0) * gyro_meas_error # compute beta (see README)
self.update_frequency = 10

def onConnect(self):
logger.info('Connecting to {} as {}'.format(self.config.realm, self.name))
self.join(realm=self.config.realm)

def calibrate(self, getxyz, stopfunc, waitfunc=None):
magmax = list(getxyz()) # Initialise max and min lists with current values
magmin = magmax[:]
while not stopfunc():
if waitfunc is not None:
waitfunc()
magxyz = tuple(getxyz())
for x in range(3):
magmax[x] = max(magmax[x], magxyz[x])
magmin[x] = min(magmin[x], magxyz[x])
self.magbias = tuple(map(lambda a, b: (a + b)/2, magmin, magmax))

@rpc('ahrs.get_heading')
def get_heading(self):
return self.heading

@rpc('ahrs.get_declination')
def get_declination(self):
return config.declination

@rpc('ahrs.set_declination')
def set_declination(self, val):
self.declination = float(val)
config.declination = self.declination
config.save()

@property
def heading(self):
if SIMULATION:
return 0

else:
offset = self.declination + self.board_offset
heading = (
180 + degrees(radians(offset) + atan2(2.0 * (self.q[1] * self.q[2] + self.q[0] * self.q[3]),
self.q[0] * self.q[0] + self.q[1] * self.q[1] - self.q[2] * self.q[2] - self.q[3] * self.q[3]))
)
heading = clamp_angle(heading)
return heading

@property
def pitch(self):
if SIMULATION:
return 0
return degrees(-asin(2.0 * (self.q[1] * self.q[3] - self.q[0] * self.q[2])))

@property
def roll(self):
if SIMULATION:
return 0
return degrees(atan2(2.0 * (self.q[0] * self.q[1] + self.q[2] * self.q[3]),
self.q[0] * self.q[0] - self.q[1] * self.q[1] - self.q[2] * self.q[2] + self.q[3] * self.q[3]))

def update_nomag(self, accel, gyro): # 3-tuples (x, y, z) for accel, gyro
ax, ay, az = accel # Units G (but later normalised)
gx, gy, gz = (radians(x) for x in gyro) # Units deg/s
if self.start_time is None:
self.start_time = micros() # First run
q1, q2, q3, q4 = (self.q[x] for x in range(4)) # short name local variable for readability
# Auxiliary variables to avoid repeated arithmetic
_2q1 = 2 * q1
_2q2 = 2 * q2
_2q3 = 2 * q3
_2q4 = 2 * q4
_4q1 = 4 * q1
_4q2 = 4 * q2
_4q3 = 4 * q3
_8q2 = 8 * q2
_8q3 = 8 * q3
q1q1 = q1 * q1
q2q2 = q2 * q2
q3q3 = q3 * q3
q4q4 = q4 * q4

# Normalise accelerometer measurement
norm = sqrt(ax * ax + ay * ay + az * az)
if norm == 0:
return # handle NaN
norm = 1 / norm # use reciprocal for division
ax *= norm
ay *= norm
az *= norm

# Gradient decent algorithm corrective step
s1 = _4q1 * q3q3 + _2q3 * ax + _4q1 * q2q2 - _2q2 * ay
s2 = _4q2 * q4q4 - _2q4 * ax + 4 * q1q1 * q2 - _2q1 * ay - _4q2 + _8q2 * q2q2 + _8q2 * q3q3 + _4q2 * az
s3 = 4 * q1q1 * q3 + _2q1 * ax + _4q3 * q4q4 - _2q4 * ay - _4q3 + _8q3 * q2q2 + _8q3 * q3q3 + _4q3 * az
s4 = 4 * q2q2 * q4 - _2q2 * ax + 4 * q3q3 * q4 - _2q3 * ay
norm = 1 / sqrt(s1 * s1 + s2 * s2 + s3 * s3 + s4 * s4) # normalise step magnitude
s1 *= norm
s2 *= norm
s3 *= norm
s4 *= norm

# Compute rate of change of quaternion
qDot1 = 0.5 * (-q2 * gx - q3 * gy - q4 * gz) - self.beta * s1
qDot2 = 0.5 * (q1 * gx + q3 * gz - q4 * gy) - self.beta * s2
qDot3 = 0.5 * (q1 * gy - q2 * gz + q4 * gx) - self.beta * s3
qDot4 = 0.5 * (q1 * gz + q2 * gy - q3 * gx) - self.beta * s4

# Integrate to yield quaternion
deltat = elapsed_micros(self.start_time) / 1e6
self.start_time = micros()
q1 += qDot1 * deltat
q2 += qDot2 * deltat
q3 += qDot3 * deltat
q4 += qDot4 * deltat
norm = 1 / sqrt(q1 * q1 + q2 * q2 + q3 * q3 + q4 * q4) # normalise quaternion
self.q = q1 * norm, q2 * norm, q3 * norm, q4 * norm

def _update_data(self):
accel, gyro, mag = self.imu.getMotion9()
mx, my, mz = (mag[x] - self.magbias[x] for x in range(3)) # Units irrelevant (normalised)
ax, ay, az = accel # Units irrelevant (normalised)
gx, gy, gz = (radians(x) for x in gyro) # Units deg/s
if self.start_time is None:
self.start_time = micros() # First run
q1, q2, q3, q4 = (self.q[x] for x in range(4)) # short name local variable for readability

# Auxiliary variables to avoid repeated arithmetic
_2q1 = 2 * q1
_2q2 = 2 * q2
_2q3 = 2 * q3
_2q4 = 2 * q4
_2q1q3 = 2 * q1 * q3
_2q3q4 = 2 * q3 * q4
q1q1 = q1 * q1
q1q2 = q1 * q2
q1q3 = q1 * q3
q1q4 = q1 * q4
q2q2 = q2 * q2
q2q3 = q2 * q3
q2q4 = q2 * q4
q3q3 = q3 * q3
q3q4 = q3 * q4
q4q4 = q4 * q4

# Normalise accelerometer measurement
norm = sqrt(ax * ax + ay * ay + az * az)
if norm == 0:
return # handle NaN
norm = 1 / norm # use reciprocal for division
ax *= norm
ay *= norm
az *= norm

# Normalise magnetometer measurement
norm = sqrt(mx * mx + my * my + mz * mz)
if norm == 0:
return # handle NaN
norm = 1 / norm # use reciprocal for division
mx *= norm
my *= norm
mz *= norm

# Reference direction of Earth's magnetic field
_2q1mx = 2 * q1 * mx
_2q1my = 2 * q1 * my
_2q1mz = 2 * q1 * mz
_2q2mx = 2 * q2 * mx
hx = mx * q1q1 - _2q1my * q4 + _2q1mz * q3 + mx * q2q2 + _2q2 * my * q3 + _2q2 * mz * q4 - mx * q3q3 - mx * q4q4
hy = _2q1mx * q4 + my * q1q1 - _2q1mz * q2 + _2q2mx * q3 - my * q2q2 + my * q3q3 + _2q3 * mz * q4 - my * q4q4
_2bx = sqrt(hx * hx + hy * hy)
_2bz = -_2q1mx * q3 + _2q1my * q2 + mz * q1q1 + _2q2mx * q4 - mz * q2q2 + _2q3 * my * q4 - mz * q3q3 + mz * q4q4
_4bx = 2 * _2bx
_4bz = 2 * _2bz

# Gradient descent algorithm corrective step
s1 = (-_2q3 * (2 * q2q4 - _2q1q3 - ax) + _2q2 * (2 * q1q2 + _2q3q4 - ay) - _2bz * q3 * (
_2bx * (0.5 - q3q3 - q4q4)
+ _2bz * (q2q4 - q1q3) - mx) + (-_2bx * q4 + _2bz * q2) * (
_2bx * (q2q3 - q1q4) + _2bz * (q1q2 + q3q4) - my)
+ _2bx * q3 * (_2bx * (q1q3 + q2q4) + _2bz * (0.5 - q2q2 - q3q3) - mz))

s2 = (_2q4 * (2 * q2q4 - _2q1q3 - ax) + _2q1 * (2 * q1q2 + _2q3q4 - ay) - 4 * q2 * (
1 - 2 * q2q2 - 2 * q3q3 - az)
+ _2bz * q4 * (_2bx * (0.5 - q3q3 - q4q4) + _2bz * (q2q4 - q1q3) - mx) + (_2bx * q3 + _2bz * q1) * (
_2bx * (q2q3 - q1q4)
+ _2bz * (q1q2 + q3q4) - my) + (_2bx * q4 - _4bz * q2) * (
_2bx * (q1q3 + q2q4) + _2bz * (0.5 - q2q2 - q3q3) - mz))

s3 = (-_2q1 * (2 * q2q4 - _2q1q3 - ax) + _2q4 * (2 * q1q2 + _2q3q4 - ay) - 4 * q3 * (
1 - 2 * q2q2 - 2 * q3q3 - az)
+ (-_4bx * q3 - _2bz * q1) * (_2bx * (0.5 - q3q3 - q4q4) + _2bz * (q2q4 - q1q3) - mx)
+ (_2bx * q2 + _2bz * q4) * (_2bx * (q2q3 - q1q4) + _2bz * (q1q2 + q3q4) - my)
+ (_2bx * q1 - _4bz * q3) * (_2bx * (q1q3 + q2q4) + _2bz * (0.5 - q2q2 - q3q3) - mz))

s4 = (_2q2 * (2 * q2q4 - _2q1q3 - ax) + _2q3 * (2 * q1q2 + _2q3q4 - ay) + (-_4bx * q4 + _2bz * q2) * (
_2bx * (0.5 - q3q3 - q4q4)
+ _2bz * (q2q4 - q1q3) - mx) + (-_2bx * q1 + _2bz * q3) * (
_2bx * (q2q3 - q1q4) + _2bz * (q1q2 + q3q4) - my)
+ _2bx * q2 * (_2bx * (q1q3 + q2q4) + _2bz * (0.5 - q2q2 - q3q3) - mz))

norm = 1 / sqrt(s1 * s1 + s2 * s2 + s3 * s3 + s4 * s4) # normalise step magnitude
s1 *= norm
s2 *= norm
s3 *= norm
s4 *= norm

# Compute rate of change of quaternion
qDot1 = 0.5 * (-q2 * gx - q3 * gy - q4 * gz) - self.beta * s1
qDot2 = 0.5 * (q1 * gx + q3 * gz - q4 * gy) - self.beta * s2
qDot3 = 0.5 * (q1 * gy - q2 * gz + q4 * gx) - self.beta * s3
qDot4 = 0.5 * (q1 * gz + q2 * gy - q3 * gx) - self.beta * s4

# Integrate to yield quaternion
deltat = elapsed_micros(self.start_time) / 1e6
self.start_time = micros()
q1 += qDot1 * deltat
q2 += qDot2 * deltat
q3 += qDot3 * deltat
q4 += qDot4 * deltat
norm = 1 / sqrt(q1 * q1 + q2 * q2 + q3 * q3 + q4 * q4) # normalise quaternion
self.q = q1 * norm, q2 * norm, q3 * norm, q4 * norm

async def update(self):
"""Must call to get updated data
3-tuples (x, y, z) for accel, gyro and mag data
This should be called at a frequency between 10-50 Hz
"""
while True:
if not SIMULATION:
self._update_data()

self.publish('ahrs.update', {
'heading': self.heading,
'roll': self.roll,
'pitch': self.pitch,
})

if SIMULATION:
await asyncio.sleep(0.1)
else:
await asyncio.sleep(0.01)
Loading

0 comments on commit 29898a2

Please sign in to comment.