Skip to content
New issue

Have a question about this project? Sign up for a free GitHub account to open an issue and contact its maintainers and the community.

By clicking “Sign up for GitHub”, you agree to our terms of service and privacy statement. We’ll occasionally send you account related emails.

Already on GitHub? Sign in to your account

Add a few algebraic structures missing from the Algebra.Construct.Pointwise #2555

Open
wants to merge 3 commits into
base: master
Choose a base branch
from
Open
Show file tree
Hide file tree
Changes from 2 commits
Commits
File filter

Filter by extension

Filter by extension

Conversations
Failed to load comments.
Loading
Jump to
Jump to file
Failed to load files.
Loading
Diff view
Diff view
35 changes: 35 additions & 0 deletions CHANGELOG.md
Original file line number Diff line number Diff line change
@@ -1,3 +1,38 @@
Version 2.3-dev
Copy link
Contributor

Choose a reason for hiding this comment

The reason will be displayed to describe this comment to others. Learn more.

This will probably work, but let's see how it comes out in the wash after #2557 !

===============

Additions to existing modules
-----------------------------

* In `Algebra.Construct.Pointwise`:
```agda
isNearSemiring : IsNearSemiring _≈_ _+_ _*_ 0# →
IsNearSemiring (liftRel _≈_) (lift₂ _+_) (lift₂ _*_) (lift₀ 0#)
isSemiringWithoutOne : IsSemiringWithoutOne _≈_ _+_ _*_ 0# →
IsSemiringWithoutOne (liftRel _≈_) (lift₂ _+_) (lift₂ _*_) (lift₀ 0#)
isCommutativeSemiringWithoutOne : IsCommutativeSemiringWithoutOne _≈_ _+_ _*_ 0# →
IsCommutativeSemiringWithoutOne (liftRel _≈_) (lift₂ _+_) (lift₂ _*_) (lift₀ 0#)
isCommutativeSemiring : IsCommutativeSemiring _≈_ _+_ _*_ 0# 1# →
IsCommutativeSemiring (liftRel _≈_) (lift₂ _+_) (lift₂ _*_) (lift₀ 0#) (lift₀ 1#)
isIdempotentSemiring : IsIdempotentSemiring _≈_ _+_ _*_ 0# 1# →
IsIdempotentSemiring (liftRel _≈_) (lift₂ _+_) (lift₂ _*_) (lift₀ 0#) (lift₀ 1#)
isKleeneAlgebra : IsKleeneAlgebra _≈_ _+_ _*_ _⋆ 0# 1# →
IsKleeneAlgebra (liftRel _≈_) (lift₂ _+_) (lift₂ _*_) (lift₁ _⋆) (lift₀ 0#) (lift₀ 1#)
isQuasiring : IsQuasiring _≈_ _+_ _*_ 0# 1# →
IsQuasiring (liftRel _≈_) (lift₂ _+_) (lift₂ _*_) (lift₀ 0#) (lift₀ 1#)
isCommutativeRing : IsCommutativeRing _≈_ _+_ _*_ -_ 0# 1# →
IsCommutativeRing (liftRel _≈_) (lift₂ _+_) (lift₂ _*_) (lift₁ -_) (lift₀ 0#) (lift₀ 1#)
commutativeMonoid : CommutativeMonoid c ℓ → CommutativeMonoid (a ⊔ c) (a ⊔ ℓ)
nearSemiring : NearSemiring c ℓ → NearSemiring (a ⊔ c) (a ⊔ ℓ)
semiringWithoutOne : SemiringWithoutOne c ℓ → SemiringWithoutOne (a ⊔ c) (a ⊔ ℓ)
commutativeSemiringWithoutOne : CommutativeSemiringWithoutOne c ℓ → CommutativeSemiringWithoutOne (a ⊔ c) (a ⊔ ℓ)
commutativeSemiring : CommutativeSemiring c ℓ → CommutativeSemiring (a ⊔ c) (a ⊔ ℓ)
idempotentSemiring : IdempotentSemiring c ℓ → IdempotentSemiring (a ⊔ c) (a ⊔ ℓ)
kleeneAlgebra : KleeneAlgebra c ℓ → KleeneAlgebra (a ⊔ c) (a ⊔ ℓ)
quasiring : Quasiring c ℓ → Quasiring (a ⊔ c) (a ⊔ ℓ)
commutativeRing : CommutativeRing c ℓ → CommutativeRing (a ⊔ c) (a ⊔ ℓ)
```

Version 2.2
===========

Expand Down
105 changes: 103 additions & 2 deletions src/Algebra/Construct/Pointwise.agda
Original file line number Diff line number Diff line change
Expand Up @@ -22,15 +22,14 @@ open import Relation.Binary.Core using (Rel)
open import Relation.Binary.Bundles using (Setoid)
open import Relation.Binary.Structures using (IsEquivalence)


private

variable
c ℓ : Level
C : Set c
_≈_ : Rel C ℓ
ε 0# 1# : C
_⁻¹ -_ : Op₁ C
_⁻¹ -_ _⋆ : Op₁ C
_∙_ _+_ _*_ : Op₂ C

lift₀ : C → A → C
Expand Down Expand Up @@ -121,6 +120,36 @@ isAbelianGroup isAbelianGroup = record
}
where module M = IsAbelianGroup isAbelianGroup

isNearSemiring : IsNearSemiring _≈_ _+_ _*_ 0# →
IsNearSemiring (liftRel _≈_) (lift₂ _+_) (lift₂ _*_) (lift₀ 0#)
isNearSemiring isNearSemiring = record
{ +-isMonoid = isMonoid M.+-isMonoid
; *-cong = λ g h _ → M.*-cong (g _) (h _)
; *-assoc = λ f g h _ → M.*-assoc (f _) (g _) (h _)
; distribʳ = λ f g h _ → M.distribʳ (f _) (g _) (h _)
; zeroˡ = λ f _ → M.zeroˡ (f _)
}
where module M = IsNearSemiring isNearSemiring

isSemiringWithoutOne : IsSemiringWithoutOne _≈_ _+_ _*_ 0# →
IsSemiringWithoutOne (liftRel _≈_) (lift₂ _+_) (lift₂ _*_) (lift₀ 0#)
isSemiringWithoutOne isSemiringWithoutOne = record
{ +-isCommutativeMonoid = isCommutativeMonoid M.+-isCommutativeMonoid
; *-cong = λ g h _ → M.*-cong (g _) (h _)
; *-assoc = λ f g h _ → M.*-assoc (f _) (g _) (h _)
; distrib = (λ f g h _ → M.distribˡ (f _) (g _) (h _)) , (λ f g h _ → M.distribʳ (f _) (g _) (h _))
; zero = (λ f _ → M.zeroˡ (f _)) , (λ f _ → M.zeroʳ (f _))
}
where module M = IsSemiringWithoutOne isSemiringWithoutOne

isCommutativeSemiringWithoutOne : IsCommutativeSemiringWithoutOne _≈_ _+_ _*_ 0# →
IsCommutativeSemiringWithoutOne (liftRel _≈_) (lift₂ _+_) (lift₂ _*_) (lift₀ 0#)
isCommutativeSemiringWithoutOne isCommutativeSemiringWithoutOne = record
{ isSemiringWithoutOne = isSemiringWithoutOne M.isSemiringWithoutOne
; *-comm = λ f g _ → M.*-comm (f _) (g _)
}
where module M = IsCommutativeSemiringWithoutOne isCommutativeSemiringWithoutOne

isSemiringWithoutAnnihilatingZero : IsSemiringWithoutAnnihilatingZero _≈_ _+_ _*_ 0# 1# →
IsSemiringWithoutAnnihilatingZero (liftRel _≈_) (lift₂ _+_) (lift₂ _*_) (lift₀ 0#) (lift₀ 1#)
isSemiringWithoutAnnihilatingZero isSemiringWithoutAnnihilatingZero = record
Expand All @@ -140,6 +169,44 @@ isSemiring isSemiring = record
}
where module M = IsSemiring isSemiring

isCommutativeSemiring : IsCommutativeSemiring _≈_ _+_ _*_ 0# 1# →
IsCommutativeSemiring (liftRel _≈_) (lift₂ _+_) (lift₂ _*_) (lift₀ 0#) (lift₀ 1#)
isCommutativeSemiring isCommutativeSemiring = record
{ isSemiring = isSemiring M.isSemiring
; *-comm = λ f g _ → M.*-comm (f _) (g _)
}
where module M = IsCommutativeSemiring isCommutativeSemiring

isIdempotentSemiring : IsIdempotentSemiring _≈_ _+_ _*_ 0# 1# →
IsIdempotentSemiring (liftRel _≈_) (lift₂ _+_) (lift₂ _*_) (lift₀ 0#) (lift₀ 1#)
isIdempotentSemiring isIdempotentSemiring = record
{ isSemiring = isSemiring M.isSemiring
; +-idem = λ f _ → M.+-idem (f _)
}
where module M = IsIdempotentSemiring isIdempotentSemiring

isKleeneAlgebra : IsKleeneAlgebra _≈_ _+_ _*_ _⋆ 0# 1# →
IsKleeneAlgebra (liftRel _≈_) (lift₂ _+_) (lift₂ _*_) (lift₁ _⋆) (lift₀ 0#) (lift₀ 1#)
isKleeneAlgebra isKleeneAlgebra = record
{ isIdempotentSemiring = isIdempotentSemiring M.isIdempotentSemiring
; starExpansive = (λ f _ → M.starExpansiveˡ (f _)) , λ f _ → M.starExpansiveʳ (f _)
; starDestructive = (λ f g h i _ → M.starDestructiveˡ (f _) (g _) (h _) (i _))
, (λ f g h i _ → M.starDestructiveʳ (f _) (g _) (h _) (i _))
}
where module M = IsKleeneAlgebra isKleeneAlgebra

isQuasiring : IsQuasiring _≈_ _+_ _*_ 0# 1# →
IsQuasiring (liftRel _≈_) (lift₂ _+_) (lift₂ _*_) (lift₀ 0#) (lift₀ 1#)
isQuasiring isQuasiring = record
{ +-isMonoid = isMonoid M.+-isMonoid
; *-cong = λ g h _ → M.*-cong (g _) (h _)
; *-assoc = λ f g h _ → M.*-assoc (f _) (g _) (h _)
; *-identity = (λ f _ → M.*-identityˡ (f _)) , λ f _ → M.*-identityʳ (f _)
; distrib = (λ f g h _ → M.distribˡ (f _) (g _) (h _)) , λ f g h _ → M.distribʳ (f _) (g _) (h _)
; zero = (λ f _ → M.zeroˡ (f _)) , λ f _ → M.zeroʳ (f _)
}
where module M = IsQuasiring isQuasiring

isRing : IsRing _≈_ _+_ _*_ -_ 0# 1# →
IsRing (liftRel _≈_) (lift₂ _+_) (lift₂ _*_) (lift₁ -_) (lift₀ 0#) (lift₀ 1#)
isRing isRing = record
Expand All @@ -151,6 +218,13 @@ isRing isRing = record
}
where module M = IsRing isRing

isCommutativeRing : IsCommutativeRing _≈_ _+_ _*_ -_ 0# 1# →
IsCommutativeRing (liftRel _≈_) (lift₂ _+_) (lift₂ _*_) (lift₁ -_) (lift₀ 0#) (lift₀ 1#)
isCommutativeRing isCommutativeRing = record
{ isRing = isRing M.isRing
; *-comm = λ f g _ → M.*-comm (f _) (g _)
}
where module M = IsCommutativeRing isCommutativeRing

------------------------------------------------------------------------
-- Bundles
Expand All @@ -170,15 +244,42 @@ commutativeSemigroup m = record { isCommutativeSemigroup = isCommutativeSemigrou
monoid : Monoid c ℓ → Monoid (a ⊔ c) (a ⊔ ℓ)
monoid m = record { isMonoid = isMonoid (Monoid.isMonoid m) }

commutativeMonoid : CommutativeMonoid c ℓ → CommutativeMonoid (a ⊔ c) (a ⊔ ℓ)
commutativeMonoid m = record { isCommutativeMonoid = isCommutativeMonoid (CommutativeMonoid.isCommutativeMonoid m) }

group : Group c ℓ → Group (a ⊔ c) (a ⊔ ℓ)
group m = record { isGroup = isGroup (Group.isGroup m) }

abelianGroup : AbelianGroup c ℓ → AbelianGroup (a ⊔ c) (a ⊔ ℓ)
abelianGroup m = record { isAbelianGroup = isAbelianGroup (AbelianGroup.isAbelianGroup m) }

nearSemiring : NearSemiring c ℓ → NearSemiring (a ⊔ c) (a ⊔ ℓ)
nearSemiring m = record { isNearSemiring = isNearSemiring (NearSemiring.isNearSemiring m) }

semiringWithoutOne : SemiringWithoutOne c ℓ → SemiringWithoutOne (a ⊔ c) (a ⊔ ℓ)
semiringWithoutOne m = record { isSemiringWithoutOne = isSemiringWithoutOne (SemiringWithoutOne.isSemiringWithoutOne m) }

commutativeSemiringWithoutOne : CommutativeSemiringWithoutOne c ℓ → CommutativeSemiringWithoutOne (a ⊔ c) (a ⊔ ℓ)
commutativeSemiringWithoutOne m = record
{ isCommutativeSemiringWithoutOne = isCommutativeSemiringWithoutOne (CommutativeSemiringWithoutOne.isCommutativeSemiringWithoutOne m) }

semiring : Semiring c ℓ → Semiring (a ⊔ c) (a ⊔ ℓ)
semiring m = record { isSemiring = isSemiring (Semiring.isSemiring m) }

commutativeSemiring : CommutativeSemiring c ℓ → CommutativeSemiring (a ⊔ c) (a ⊔ ℓ)
commutativeSemiring m = record { isCommutativeSemiring = isCommutativeSemiring (CommutativeSemiring.isCommutativeSemiring m) }

idempotentSemiring : IdempotentSemiring c ℓ → IdempotentSemiring (a ⊔ c) (a ⊔ ℓ)
idempotentSemiring m = record { isIdempotentSemiring = isIdempotentSemiring (IdempotentSemiring.isIdempotentSemiring m) }

kleeneAlgebra : KleeneAlgebra c ℓ → KleeneAlgebra (a ⊔ c) (a ⊔ ℓ)
kleeneAlgebra m = record { isKleeneAlgebra = isKleeneAlgebra (KleeneAlgebra.isKleeneAlgebra m) }

quasiring : Quasiring c ℓ → Quasiring (a ⊔ c) (a ⊔ ℓ)
quasiring m = record { isQuasiring = isQuasiring (Quasiring.isQuasiring m) }

ring : Ring c ℓ → Ring (a ⊔ c) (a ⊔ ℓ)
ring m = record { isRing = isRing (Ring.isRing m) }

commutativeRing : CommutativeRing c ℓ → CommutativeRing (a ⊔ c) (a ⊔ ℓ)
commutativeRing m = record { isCommutativeRing = isCommutativeRing (CommutativeRing.isCommutativeRing m) }
Loading