-
Notifications
You must be signed in to change notification settings - Fork 0
Commit
This commit does not belong to any branch on this repository, and may belong to a fork outside of the repository.
- Loading branch information
Showing
3 changed files
with
193 additions
and
1 deletion.
There are no files selected for viewing
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
Original file line number | Diff line number | Diff line change |
---|---|---|
@@ -1,5 +1,4 @@ | ||
_pycache_/ | ||
wandb/ | ||
.idea/ | ||
|
||
|
Empty file.
193 changes: 193 additions & 0 deletions
193
src/train_utils/train_models/models/yolov5/utils/loggers/wandb/wandb_utils.py
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
Original file line number | Diff line number | Diff line change |
---|---|---|
@@ -0,0 +1,193 @@ | ||
# YOLOv5 🚀 by Ultralytics, GPL-3.0 license | ||
|
||
# WARNING ⚠️ wandb is deprecated and will be removed in future release. | ||
# See supported integrations at https://github.com/ultralytics/yolov5#integrations | ||
|
||
import logging | ||
import os | ||
import sys | ||
from contextlib import contextmanager | ||
from pathlib import Path | ||
|
||
from utils.general import LOGGER, colorstr | ||
|
||
FILE = Path(__file__).resolve() | ||
ROOT = FILE.parents[3] # YOLOv5 root directory | ||
if str(ROOT) not in sys.path: | ||
sys.path.append(str(ROOT)) # add ROOT to PATH | ||
RANK = int(os.getenv('RANK', -1)) | ||
DEPRECATION_WARNING = f"{colorstr('wandb')}: WARNING ⚠️ wandb is deprecated and will be removed in a future release. " \ | ||
f'See supported integrations at https://github.com/ultralytics/yolov5#integrations.' | ||
|
||
try: | ||
import wandb | ||
|
||
assert hasattr(wandb, '__version__') # verify package import not local dir | ||
LOGGER.warning(DEPRECATION_WARNING) | ||
except (ImportError, AssertionError): | ||
wandb = None | ||
|
||
|
||
class WandbLogger(): | ||
"""Log training runs, datasets, models, and predictions to Weights & Biases. | ||
This logger sends information to W&B at wandb.ai. By default, this information | ||
includes hyperparameters, system configuration and metrics, model metrics, | ||
and basic data metrics and analyses. | ||
By providing additional command line arguments to train.py, datasets, | ||
models and predictions can also be logged. | ||
For more on how this logger is used, see the Weights & Biases documentation: | ||
https://docs.wandb.com/guides/integrations/yolov5 | ||
""" | ||
|
||
def __init__(self, opt, run_id=None, job_type='Training'): | ||
""" | ||
- Initialize WandbLogger instance | ||
- Upload dataset if opt.upload_dataset is True | ||
- Setup training processes if job_type is 'Training' | ||
arguments: | ||
opt (namespace) -- Commandline arguments for this run | ||
run_id (str) -- Run ID of W&B run to be resumed | ||
job_type (str) -- To set the job_type for this run | ||
""" | ||
# Pre-training routine -- | ||
self.job_type = job_type | ||
self.wandb, self.wandb_run = wandb, wandb.run if wandb else None | ||
self.val_artifact, self.train_artifact = None, None | ||
self.train_artifact_path, self.val_artifact_path = None, None | ||
self.result_artifact = None | ||
self.val_table, self.result_table = None, None | ||
self.max_imgs_to_log = 16 | ||
self.data_dict = None | ||
if self.wandb: | ||
self.wandb_run = wandb.init(config=opt, | ||
resume='allow', | ||
project='YOLOv5' if opt.project == 'runs/train' else Path(opt.project).stem, | ||
entity=opt.entity, | ||
name=opt.name if opt.name != 'exp' else None, | ||
job_type=job_type, | ||
id=run_id, | ||
allow_val_change=True) if not wandb.run else wandb.run | ||
|
||
if self.wandb_run: | ||
if self.job_type == 'Training': | ||
if isinstance(opt.data, dict): | ||
# This means another dataset manager has already processed the dataset info (e.g. ClearML) | ||
# and they will have stored the already processed dict in opt.data | ||
self.data_dict = opt.data | ||
self.setup_training(opt) | ||
|
||
def setup_training(self, opt): | ||
""" | ||
Setup the necessary processes for training YOLO models: | ||
- Attempt to download model checkpoint and dataset artifacts if opt.resume stats with WANDB_ARTIFACT_PREFIX | ||
- Update data_dict, to contain info of previous run if resumed and the paths of dataset artifact if downloaded | ||
- Setup log_dict, initialize bbox_interval | ||
arguments: | ||
opt (namespace) -- commandline arguments for this run | ||
""" | ||
self.log_dict, self.current_epoch = {}, 0 | ||
self.bbox_interval = opt.bbox_interval | ||
if isinstance(opt.resume, str): | ||
model_dir, _ = self.download_model_artifact(opt) | ||
if model_dir: | ||
self.weights = Path(model_dir) / 'last.pt' | ||
config = self.wandb_run.config | ||
opt.weights, opt.save_period, opt.batch_size, opt.bbox_interval, opt.epochs, opt.hyp, opt.imgsz = str( | ||
self.weights), config.save_period, config.batch_size, config.bbox_interval, config.epochs, \ | ||
config.hyp, config.imgsz | ||
|
||
if opt.bbox_interval == -1: | ||
self.bbox_interval = opt.bbox_interval = (opt.epochs // 10) if opt.epochs > 10 else 1 | ||
if opt.evolve or opt.noplots: | ||
self.bbox_interval = opt.bbox_interval = opt.epochs + 1 # disable bbox_interval | ||
|
||
def log_model(self, path, opt, epoch, fitness_score, best_model=False): | ||
""" | ||
Log the model checkpoint as W&B artifact | ||
arguments: | ||
path (Path) -- Path of directory containing the checkpoints | ||
opt (namespace) -- Command line arguments for this run | ||
epoch (int) -- Current epoch number | ||
fitness_score (float) -- fitness score for current epoch | ||
best_model (boolean) -- Boolean representing if the current checkpoint is the best yet. | ||
""" | ||
model_artifact = wandb.Artifact('run_' + wandb.run.id + '_model', | ||
type='model', | ||
metadata={ | ||
'original_url': str(path), | ||
'epochs_trained': epoch + 1, | ||
'save period': opt.save_period, | ||
'project': opt.project, | ||
'total_epochs': opt.epochs, | ||
'fitness_score': fitness_score}) | ||
model_artifact.add_file(str(path / 'last.pt'), name='last.pt') | ||
wandb.log_artifact(model_artifact, | ||
aliases=['latest', 'last', 'epoch ' + str(self.current_epoch), 'best' if best_model else '']) | ||
LOGGER.info(f'Saving model artifact on epoch {epoch + 1}') | ||
|
||
def val_one_image(self, pred, predn, path, names, im): | ||
pass | ||
|
||
def log(self, log_dict): | ||
""" | ||
save the metrics to the logging dictionary | ||
arguments: | ||
log_dict (Dict) -- metrics/media to be logged in current step | ||
""" | ||
if self.wandb_run: | ||
for key, value in log_dict.items(): | ||
self.log_dict[key] = value | ||
|
||
def end_epoch(self): | ||
""" | ||
commit the log_dict, model artifacts and Tables to W&B and flush the log_dict. | ||
arguments: | ||
best_result (boolean): Boolean representing if the result of this evaluation is best or not | ||
""" | ||
if self.wandb_run: | ||
with all_logging_disabled(): | ||
try: | ||
wandb.log(self.log_dict) | ||
except BaseException as e: | ||
LOGGER.info( | ||
f'An error occurred in wandb logger. The training will proceed without interruption. More info\n{e}' | ||
) | ||
self.wandb_run.finish() | ||
self.wandb_run = None | ||
self.log_dict = {} | ||
|
||
def finish_run(self): | ||
""" | ||
Log metrics if any and finish the current W&B run | ||
""" | ||
if self.wandb_run: | ||
if self.log_dict: | ||
with all_logging_disabled(): | ||
wandb.log(self.log_dict) | ||
wandb.run.finish() | ||
LOGGER.warning(DEPRECATION_WARNING) | ||
|
||
|
||
@contextmanager | ||
def all_logging_disabled(highest_level=logging.CRITICAL): | ||
""" source - https://gist.github.com/simon-weber/7853144 | ||
A context manager that will prevent any logging messages triggered during the body from being processed. | ||
:param highest_level: the maximum logging level in use. | ||
This would only need to be changed if a custom level greater than CRITICAL is defined. | ||
""" | ||
previous_level = logging.root.manager.disable | ||
logging.disable(highest_level) | ||
try: | ||
yield | ||
finally: | ||
logging.disable(previous_level) |