-
Notifications
You must be signed in to change notification settings - Fork 1
Commit
This commit does not belong to any branch on this repository, and may belong to a fork outside of the repository.
- Loading branch information
1 parent
96b9c3c
commit 4a76ccd
Showing
7 changed files
with
105 additions
and
3 deletions.
There are no files selected for viewing
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
Original file line number | Diff line number | Diff line change |
---|---|---|
@@ -0,0 +1,22 @@ | ||
# Introduction to NumPy | ||
|
||
## Apa itu NumPy? | ||
|
||
NumPy adalah library fundamental untuk scientific computing di Python. NumPy digunakan untuk melakukan operasi matematika pada multi-dimensional array object, beserta objek turunannya seperti masked arrays dan matrix. | ||
|
||
NumPy menyediakan fungsi-fungsi yang efisien untuk operasi matematika pada array, seperti operasi linear algebra, operasi statistik, shape manimpulation, sorting, selecting, I/O, dan lainnya. | ||
|
||
Core dari Numpy adalah objek `ndarray` yang mengenkapsulasi array n-dimensi dengan elemen-elemen yang seragam, dimana operasi-operasinya dilakukan pada kode yang telah tekompilasi. | ||
|
||
Referensi: https://numpy.org/doc/stable/user/whatisnumpy.html#what-is-numpy | ||
|
||
## Mengapa menggunakan NumPy? | ||
|
||
Python memiliki built-in `list` yang dapat digunakan untuk menyimpan data dalam bentuk array. Namun, `list` tidak efisien untuk melakukan operasi matematika pada data yang besar dan lambat untuk diproses. | ||
|
||
Berikut beberapa perbedaan antara Numpy array dengan Python list: | ||
|
||
1. Numpy array memiliki ukuran yang tetap, sedangkan Python list memiliki ukuran yang dinamis. Perubahan pada ukuran Numpy array akan menghasilkan array baru dan menghapus array lama. | ||
2. Numpy array memiliki elemen-elemen yang seragam, sehingga ukuran mereka di dalam memori akan tetap sama. | ||
3. Numpy array mendukung operasi matematika pada array ukuran besar secara efisien, sedangkan Python list tidak. | ||
4. Bertambah banyaknya library scientific computing di Python yang menggunakan NumPy sebagai basisnya. |
This file was deleted.
Oops, something went wrong.
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
Original file line number | Diff line number | Diff line change |
---|---|---|
@@ -0,0 +1,13 @@ | ||
# NumPy Fundamentals | ||
|
||
Dokumen-dokumen dari situs resmi NumPy di bawah ini akan membantu kamu untuk lebih memahami konsep, design decisions, dan technical constrains dari NumPy. | ||
|
||
- [Array creation](https://numpy.org/doc/stable/user/basics.creation.html) | ||
- [Indexing on ndarrays](https://numpy.org/doc/stable/user/basics.indexing.html) | ||
- [I/O with NumPy](https://numpy.org/doc/stable/user/basics.io.html) | ||
- [Data types](https://numpy.org/doc/stable/user/basics.types.html) | ||
- [Broadcasting](https://numpy.org/doc/stable/user/basics.broadcasting.html) | ||
- [Copies and views](https://numpy.org/doc/stable/user/basics.copies.html) | ||
- [Working with Arrays of Strings And Bytes](https://numpy.org/doc/stable/user/basics.strings.html) | ||
- [Structured arrays](https://numpy.org/doc/stable/user/basics.rec.html) | ||
- [Universal functions (ufunc) basics](https://numpy.org/doc/stable/user/basics.ufuncs.html) |
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
Original file line number | Diff line number | Diff line change |
---|---|---|
@@ -0,0 +1,11 @@ | ||
# NumPy Quickstart | ||
|
||
Untuk mulai menggunakan NumPy dan mempelajari konsep dasar NumPy, kamu dapat membaca tutorial dari halaman resmi NumPy: | ||
|
||
[NumPy quickstart](https://numpy.org/doc/stable/user/quickstart.html) | ||
|
||
Tutorial di atas akan membantu kamu memahami tentang: | ||
|
||
1. Perbedaan antara one-, two-, dan n-dimensional arrays di NumPy | ||
2. Bagaimana cara menggunakan operasi-operasi aljabar linear untuk n-dimensional arrays tanpa menggunakan for-loops | ||
3. Memaham properti `axis` dan `shape` dari n-dimensional arrays |
Some generated files are not rendered by default. Learn more about how customized files appear on GitHub.
Oops, something went wrong.
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters