forked from jacobgil/pytorch-grad-cam
-
Notifications
You must be signed in to change notification settings - Fork 0
Commit
This commit does not belong to any branch on this repository, and may belong to a fork outside of the repository.
- Loading branch information
Showing
1 changed file
with
263 additions
and
0 deletions.
There are no files selected for viewing
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
Original file line number | Diff line number | Diff line change |
---|---|---|
@@ -0,0 +1,263 @@ | ||
import argparse | ||
import cv2 | ||
import numpy as np | ||
import torch | ||
from torch.autograd import Function | ||
from torchvision import models | ||
|
||
class FeatureExtractor(): | ||
""" Class for extracting activations and | ||
registering gradients from targetted intermediate layers """ | ||
|
||
def __init__(self, model, target_layers): | ||
self.model = model | ||
self.target_layers = target_layers | ||
self.gradients = [] | ||
|
||
def save_gradient(self, grad): | ||
self.gradients.append(grad) | ||
|
||
def __call__(self, x): | ||
outputs = [] | ||
self.gradients = [] | ||
for name, module in self.model._modules.items(): | ||
x = module(x) | ||
if name in self.target_layers: | ||
x.register_hook(self.save_gradient) | ||
outputs += [x] | ||
return outputs, x | ||
|
||
|
||
class ModelOutputs(): | ||
""" Class for making a forward pass, and getting: | ||
1. The network output. | ||
2. Activations from intermeddiate targetted layers. | ||
3. Gradients from intermeddiate targetted layers. """ | ||
|
||
def __init__(self, model, feature_module, target_layers): | ||
self.model = model | ||
self.feature_module = feature_module | ||
self.feature_extractor = FeatureExtractor(self.feature_module, target_layers) | ||
|
||
def get_gradients(self): | ||
return self.feature_extractor.gradients | ||
|
||
def __call__(self, x): | ||
target_activations = [] | ||
for name, module in self.model._modules.items(): | ||
if module == self.feature_module: | ||
target_activations, x = self.feature_extractor(x) | ||
elif "avgpool" in name.lower(): | ||
x = module(x) | ||
x = x.view(x.size(0),-1) | ||
else: | ||
x = module(x) | ||
|
||
return target_activations, x | ||
|
||
|
||
def preprocess_image(img): | ||
means = [0.485, 0.456, 0.406] | ||
stds = [0.229, 0.224, 0.225] | ||
|
||
preprocessed_img = img.copy()[:, :, ::-1] | ||
for i in range(3): | ||
preprocessed_img[:, :, i] = preprocessed_img[:, :, i] - means[i] | ||
preprocessed_img[:, :, i] = preprocessed_img[:, :, i] / stds[i] | ||
preprocessed_img = \ | ||
np.ascontiguousarray(np.transpose(preprocessed_img, (2, 0, 1))) | ||
preprocessed_img = torch.from_numpy(preprocessed_img) | ||
preprocessed_img.unsqueeze_(0) | ||
input = preprocessed_img.requires_grad_(True) | ||
return input | ||
|
||
|
||
def show_cam_on_image(img, mask): | ||
heatmap = cv2.applyColorMap(np.uint8(255 * mask), cv2.COLORMAP_JET) | ||
heatmap = np.float32(heatmap) / 255 | ||
cam = heatmap + np.float32(img) | ||
cam = cam / np.max(cam) | ||
cv2.imwrite("cam.jpg", np.uint8(255 * cam)) | ||
|
||
|
||
class GradCam: | ||
def __init__(self, model, feature_module, target_layer_names, use_cuda): | ||
self.model = model | ||
self.feature_module = feature_module | ||
self.model.eval() | ||
self.cuda = use_cuda | ||
if self.cuda: | ||
self.model = model.cuda() | ||
|
||
self.extractor = ModelOutputs(self.model, self.feature_module, target_layer_names) | ||
|
||
def forward(self, input): | ||
return self.model(input) | ||
|
||
def __call__(self, input, index=None): | ||
if self.cuda: | ||
features, output = self.extractor(input.cuda()) | ||
else: | ||
features, output = self.extractor(input) | ||
|
||
if index == None: | ||
index = np.argmax(output.cpu().data.numpy()) | ||
|
||
one_hot = np.zeros((1, output.size()[-1]), dtype=np.float32) | ||
one_hot[0][index] = 1 | ||
one_hot = torch.from_numpy(one_hot).requires_grad_(True) | ||
if self.cuda: | ||
one_hot = torch.sum(one_hot.cuda() * output) | ||
else: | ||
one_hot = torch.sum(one_hot * output) | ||
|
||
self.feature_module.zero_grad() | ||
self.model.zero_grad() | ||
one_hot.backward(retain_graph=True) | ||
|
||
grads_val = self.extractor.get_gradients()[-1].cpu().data.numpy() | ||
|
||
target = features[-1] | ||
target = target.cpu().data.numpy()[0, :] | ||
|
||
weights = np.mean(grads_val, axis=(2, 3))[0, :] | ||
cam = np.zeros(target.shape[1:], dtype=np.float32) | ||
|
||
for i, w in enumerate(weights): | ||
cam += w * target[i, :, :] | ||
|
||
cam = np.maximum(cam, 0) | ||
cam = cv2.resize(cam, input.shape[2:]) | ||
cam = cam - np.min(cam) | ||
cam = cam / np.max(cam) | ||
return cam | ||
|
||
|
||
class GuidedBackpropReLU(Function): | ||
|
||
@staticmethod | ||
def forward(self, input): | ||
positive_mask = (input > 0).type_as(input) | ||
output = torch.addcmul(torch.zeros(input.size()).type_as(input), input, positive_mask) | ||
self.save_for_backward(input, output) | ||
return output | ||
|
||
@staticmethod | ||
def backward(self, grad_output): | ||
input, output = self.saved_tensors | ||
grad_input = None | ||
|
||
positive_mask_1 = (input > 0).type_as(grad_output) | ||
positive_mask_2 = (grad_output > 0).type_as(grad_output) | ||
grad_input = torch.addcmul(torch.zeros(input.size()).type_as(input), | ||
torch.addcmul(torch.zeros(input.size()).type_as(input), grad_output, | ||
positive_mask_1), positive_mask_2) | ||
|
||
return grad_input | ||
|
||
|
||
class GuidedBackpropReLUModel: | ||
def __init__(self, model, use_cuda): | ||
self.model = model | ||
self.model.eval() | ||
self.cuda = use_cuda | ||
if self.cuda: | ||
self.model = model.cuda() | ||
|
||
# replace ReLU with GuidedBackpropReLU | ||
for idx, module in self.model.features._modules.items(): | ||
if module.__class__.__name__ == 'ReLU': | ||
self.model.features._modules[idx] = GuidedBackpropReLU.apply | ||
|
||
def forward(self, input): | ||
return self.model(input) | ||
|
||
def __call__(self, input, index=None): | ||
if self.cuda: | ||
output = self.forward(input.cuda()) | ||
else: | ||
output = self.forward(input) | ||
|
||
if index == None: | ||
index = np.argmax(output.cpu().data.numpy()) | ||
|
||
one_hot = np.zeros((1, output.size()[-1]), dtype=np.float32) | ||
one_hot[0][index] = 1 | ||
one_hot = torch.from_numpy(one_hot).requires_grad_(True) | ||
if self.cuda: | ||
one_hot = torch.sum(one_hot.cuda() * output) | ||
else: | ||
one_hot = torch.sum(one_hot * output) | ||
|
||
# self.model.features.zero_grad() | ||
# self.model.classifier.zero_grad() | ||
one_hot.backward(retain_graph=True) | ||
|
||
output = input.grad.cpu().data.numpy() | ||
output = output[0, :, :, :] | ||
|
||
return output | ||
|
||
|
||
def get_args(): | ||
parser = argparse.ArgumentParser() | ||
parser.add_argument('--use-cuda', action='store_true', default=False, | ||
help='Use NVIDIA GPU acceleration') | ||
parser.add_argument('--image-path', type=str, default='./examples/both.png', | ||
help='Input image path') | ||
args = parser.parse_args() | ||
args.use_cuda = args.use_cuda and torch.cuda.is_available() | ||
if args.use_cuda: | ||
print("Using GPU for acceleration") | ||
else: | ||
print("Using CPU for computation") | ||
|
||
return args | ||
|
||
def deprocess_image(img): | ||
""" see https://github.com/jacobgil/keras-grad-cam/blob/master/grad-cam.py#L65 """ | ||
img = img - np.mean(img) | ||
img = img / (np.std(img) + 1e-5) | ||
img = img * 0.1 | ||
img = img + 0.5 | ||
img = np.clip(img, 0, 1) | ||
return np.uint8(img*255) | ||
|
||
|
||
if __name__ == '__main__': | ||
""" python grad_cam.py <path_to_image> | ||
1. Loads an image with opencv. | ||
2. Preprocesses it for VGG19 and converts to a pytorch variable. | ||
3. Makes a forward pass to find the category index with the highest score, | ||
and computes intermediate activations. | ||
Makes the visualization. """ | ||
|
||
args = get_args() | ||
|
||
# Can work with any model, but it assumes that the model has a | ||
# feature method, and a classifier method, | ||
# as in the VGG models in torchvision. | ||
model = models.vgg19(pretrained=True) | ||
grad_cam = GradCam(model=model, feature_module=model.features, \ | ||
target_layer_names=["35"], use_cuda=args.use_cuda) | ||
|
||
img = cv2.imread(args.image_path, 1) | ||
img = np.float32(cv2.resize(img, (224, 224))) / 255 | ||
input = preprocess_image(img) | ||
|
||
# If None, returns the map for the highest scoring category. | ||
# Otherwise, targets the requested index. | ||
target_index = None | ||
mask = grad_cam(input, target_index) | ||
|
||
show_cam_on_image(img, mask) | ||
|
||
gb_model = GuidedBackpropReLUModel(model=models.vgg19(pretrained=True), use_cuda=args.use_cuda) | ||
gb = gb_model(input, index=target_index) | ||
gb = gb.transpose((1, 2, 0)) | ||
cam_mask = cv2.merge([mask, mask, mask]) | ||
cam_gb = deprocess_image(cam_mask*gb) | ||
gb = deprocess_image(gb) | ||
|
||
cv2.imwrite('gb.jpg', gb) | ||
cv2.imwrite('cam_gb.jpg', cam_gb) |