Skip to content

Commit

Permalink
Release/0.9 (ashleve#141)
Browse files Browse the repository at this point in the history
* add flake8 and prettier to pre-commit-config
* add setup.cfg
* add workers=True to seed_everything()
* update lightning badge logo
* bump package versions
* update README.md
* add __init__.py files
* add more logger configs parameters
* add default Dockerfile
* change .env.template to .env.example
* move inference example to readme
* remove img_dataset.py
* simplify names of wandb callbacks
* remove wandb test marker
* format files with prettier
  • Loading branch information
Łukasz Zalewski authored May 21, 2021
1 parent 023d4bd commit 70ab061
Show file tree
Hide file tree
Showing 49 changed files with 476 additions and 418 deletions.
7 changes: 7 additions & 0 deletions .env.example
Original file line number Diff line number Diff line change
@@ -0,0 +1,7 @@
# this is example of the file that can be used for storing private and user specific environment variables, like keys or system paths
# create a file named .env (by default .env will be excluded from version control)
# the variables declared in .env are loaded in run.py automatically
# hydra allows you to reference variables in .yaml configs with special syntax: ${oc.env:MY_VAR}

MY_VAR="/home/user/my/system/path"
MY_KEY="asdgjhawi8y23ihsghsueity23ihwd"
8 changes: 0 additions & 8 deletions .env.template

This file was deleted.

44 changes: 22 additions & 22 deletions .pre-commit-config.yaml
Original file line number Diff line number Diff line change
@@ -1,40 +1,40 @@
default_language_version:
python: python3.8
python: python3.8

repos:

# Pre-commit hooks
- repo: https://github.com/pre-commit/pre-commit-hooks
rev: v3.2.0
rev: v3.4.0
hooks:
# list of supported hooks: https://pre-commit.com/hooks.html
- id: trailing-whitespace
- id: debug-statements
- id: detect-private-key
- id: end-of-file-fixer
- id: check-yaml
- id: check-added-large-files
- id: debug-statements
- id: detect-private-key

# Black (code formatting)
# python code formatting
- repo: https://github.com/psf/black
rev: 20.8b1
hooks:
- id: black
args: [
--line-length, "99",
# --exclude, src/train.py,
]
args: [--line-length, "99"]

# Isort (import sorting)
# python import sorting
- repo: https://github.com/PyCQA/isort
rev: 5.7.0
rev: 5.8.0
hooks:
- id: isort
# profiles: https://pycqa.github.io/isort/docs/configuration/profiles/
# other flags: https://pycqa.github.io/isort/docs/configuration/options/
args: [
--profile, black,
--skip, src/train.py,
--skip, run.py,
--filter-files,
]
# files: "src/.*"

# yaml formatting
- repo: https://github.com/pre-commit/mirrors-prettier
rev: v2.3.0
hooks:
- id: prettier
types: [yaml]

# python code analysis
- repo: https://github.com/PyCQA/flake8
rev: 3.9.2
hooks:
- id: flake8
22 changes: 22 additions & 0 deletions Dockerfile
Original file line number Diff line number Diff line change
@@ -0,0 +1,22 @@
# Build: docker build -t project_name .
# Run: docker run --gpus all -it --rm project_name

# Build from official Nvidia PyTorch image
# GPU-ready with Apex for mixed-precision support
# https://ngc.nvidia.com/catalog/containers/nvidia:pytorch
# https://docs.nvidia.com/deeplearning/frameworks/support-matrix/
FROM nvcr.io/nvidia/pytorch:21.03-py3


# Copy all files
ADD . /workspace/project
WORKDIR /workspace/project


# Create myenv
RUN conda env create -f conda_env_gpu.yaml -n myenv
RUN conda init bash


# Set myenv to default virtual environment
RUN echo "source activate myenv" >> ~/.bashrc
127 changes: 93 additions & 34 deletions README.md
Original file line number Diff line number Diff line change
Expand Up @@ -2,14 +2,13 @@

# Lightning-Hydra-Template

<!--
<a href="https://pytorch.org/get-started/locally/"><img alt="PyTorch" src="https://img.shields.io/badge/python-3.6%20%7C%203.7%20%7C%203.8-blue?logo=python&logoColor=white&style=for-the-badge"></a>
-->
<a href="https://pytorch.org/get-started/locally/"><img alt="PyTorch" src="https://img.shields.io/badge/-PyTorch-ee4c2c?style=for-the-badge&logo=pytorch&logoColor=white"></a>
<a href="https://pytorchlightning.ai/"><img alt="Lightning" src="https://img.shields.io/badge/-Lightning-792ee5?style=for-the-badge"></a>
<a href="https://hydra.cc/"><img alt="Config: hydra" src="https://img.shields.io/badge/config-hydra-89b8cd?style=for-the-badge"></a>
<a href="https://hub.docker.com/r/ashlev/lightning-hydra"><img alt="Docker" src="https://img.shields.io/badge/docker-257bd6?style=for-the-badge&logo=docker&logoColor=white"></a>
<a href="https://black.readthedocs.io/en/stable/"><img alt="Code style: black" src="https://img.shields.io/badge/code%20style-black-black.svg?style=for-the-badge"></a>

<a href="https://pytorch.org/get-started/locally/"><img alt="Python" src="https://img.shields.io/badge/-Python 3.7--3.9-blue?style=for-the-badge&logo=python&logoColor=white"></a>
<a href="https://pytorch.org/get-started/locally/"><img alt="PyTorch" src="https://img.shields.io/badge/-PyTorch 1.8+-ee4c2c?style=for-the-badge&logo=pytorch&logoColor=white"></a>
<a href="https://pytorchlightning.ai/"><img alt="Lightning" src="https://img.shields.io/badge/-Lightning-792ee5?style=for-the-badge&logo=pytorchlightning&logoColor=white"></a>
<a href="https://hydra.cc/"><img alt="Config: hydra" src="https://img.shields.io/badge/config-hydra-89b8cd?style=for-the-badge&labelColor=gray"></a>
<a href="https://black.readthedocs.io/en/stable/"><img alt="Code style: black" src="https://img.shields.io/badge/code%20style-black-black.svg?style=for-the-badge&labelColor=gray"></a>
<!-- <a href="https://hub.docker.com/r/ashlev/lightning-hydra"><img alt="Docker" src="https://img.shields.io/badge/docker-257bd6?style=for-the-badge&logo=docker&logoColor=white"></a> -->

A clean and scalable template to kickstart your deep learning project 🚀⚡🔥<br>
Click on [<kbd>Use this template</kbd>](https://github.com/ashleve/lightning-hydra-template/generate) to initialize new repository.
Expand Down Expand Up @@ -87,26 +86,26 @@ The directory structure of new project looks like this:
│ `1.0-jqp-initial-data-exploration.ipynb`.
├── tests <- Tests of any kind
│ ├── smoke_tests
│ └── unit_tests
│ ├── smoke
│ └── unit
├── src
│ ├── callbacks <- Lightning callbacks
│ ├── datamodules <- Lightning datamodules
│ ├── models <- Lightning models
│ ├── utils <- Utility scripts
│ │ ├── inference_example.py <- Example of inference with trained model
│ │ └── utils.py <- Extra features for the template
│ │
│ └── train.py <- Training pipeline
├── run.py <- Run any pipeline with chosen experiment configuration
├── .env.template <- Template of file for storing private environment variables
├── .env.example <- Template of the file for storing private environment variables
├── .gitignore <- List of files/folders ignored by git
├── .pre-commit-config.yaml <- Configuration of automatic code formatting
├── conda_env_gpu.yaml <- File for installing conda environment
├── Dockerfile <- File for building docker container
├── requirements.txt <- File for installing python dependencies
├── setup.cgf <- Configurations of linters and pytest
├── LICENSE
└── README.md
```
Expand Down Expand Up @@ -364,21 +363,15 @@ python run.py -m 'experiment=glob(*)'


## 🐳&nbsp;&nbsp;Docker
I recommend the official [nvidia ngc pytorch container](https://ngc.nvidia.com/catalog/containers/nvidia:pytorch/tags) (size: 6GB, it comes with installed Apex for mixed-precision training), or "devel" version of [pytorch/pytorch](https://hub.docker.com/r/pytorch/pytorch).

Custom dockerfiles for the template are provided on branch [`dockerfiles`](https://github.com/ashleve/lightning-hydra-template/tree/dockerfiles). You can use them as a starting point for building your own images.
I recommend the official [nvidia ngc pytorch container](https://ngc.nvidia.com/catalog/containers/nvidia:pytorch/tags).
To build the container from provided Dockerfile use:
```yaml
# download image
docker pull nvcr.io/nvidia/pytorch:21.03-py3

# run container from image with GPUs enabled
docker run --gpus all -it --rm nvcr.io/nvidia/pytorch:21.03-py3
docker build -t project_name .
docker run --gpus all -it --rm project_name
```
<!--
# run container with mounted volume
docker run --gpus all -it --rm nvcr.io/nvidia/pytorch:21.03-py3
-->
<br><br>

Others dockerfiles are provided on branch [`dockerfiles`](https://github.com/ashleve/lightning-hydra-template/tree/dockerfiles). You can use them as a starting point for building more complicated images.
<br><br><br>



Expand Down Expand Up @@ -693,9 +686,65 @@ Using this approach doesn't require you to add any boilerplate into your pipelin


### Inference
Template contains simple example of loading model from checkpoint and running predictions.<br>
Take a look at [inference_example.py](src/utils/inference_example.py).
<br><br>
The following is example of loading model from checkpoint and running predictions.<br>
<details>
<summary><b>Show inference example</b></summary>

```python
from PIL import Image
from torchvision import transforms
from src.models.mnist_model import MNISTLitModel
def predict():
"""Example of inference with trained model.
It loads trained image classification model from checkpoint.
Then it loads example image and predicts its label.
"""
# ckpt can be also a URL!
CKPT_PATH = "last.ckpt"
# load model from checkpoint
# model __init__ parameters will be loaded from ckpt automatically
# you can also pass some parameter explicitly to override it
trained_model = MNISTLitModel.load_from_checkpoint(checkpoint_path=CKPT_PATH)
# print model hyperparameters
print(trained_model.hparams)
# switch to evaluation mode
trained_model.eval()
trained_model.freeze()
# load data
img = Image.open("data/example_img.png").convert("L") # convert to black and white
# img = Image.open("data/example_img.png").convert("RGB") # convert to RGB
# preprocess
mnist_transforms = transforms.Compose(
[
transforms.ToTensor(),
transforms.Resize((28, 28)),
transforms.Normalize((0.1307,), (0.3081,)),
]
)
img = mnist_transforms(img)
img = img.reshape((1, *img.size())) # reshape to form batch of size 1
# inference
output = trained_model(img)
print(output)
if __name__ == "__main__":
predict()
```

</details>
<br>



Expand All @@ -709,8 +758,8 @@ pytest
# run tests from specific file
pytest tests/smoke_tests/test_commands.py
# run all tests except the ones using wandb
pytest -k "not wandb"
# run all tests except the ones marked as slow
pytest -k "not slow"
```
I often find myself running into bugs that come out only in edge cases or on some specific hardware/environment. To speed up the development, I usually constantly execute tests that run a couple of quick 1 epoch experiments, like overfitting to 10 batches, training on 25% of data, etc. Those kind of tests don't check for any specific output - they exist to simply verify that executing some commands doesn't end up in throwing exceptions. You can find them implemented in [tests/smoke_tests](tests/smoke_tests) folder.

Expand All @@ -729,8 +778,11 @@ To support reproducibility:
To provide examples of logging custom visualisations with callbacks only:
- **LogConfusionMatrix**
- **LogF1PrecRecHeatmap**
- **ImagePredictionLogger**
<br>
- **LogImagePredictions**

To see the result of all the callbacks attached, take a look at [this experiment dashboard](https://wandb.ai/hobglob/template-tests/runs/3rw7q70h).
<br><br>



### Multi-GPU Training
Expand Down Expand Up @@ -1012,8 +1064,15 @@ Now you can add any commands to your `.autoenv` file, e.g. activation of virtual
# activate conda environment
conda activate myenv
# initialize hydra tab completion for bash
# activate hydra tab completion for bash
eval "$(python run.py -sc install=bash)"
# enable aliases for debugging
alias test='pytest'
alias debug1='python run.py debug=true'
alias debug2='python run.py trainer.gpus=1 trainer.max_epochs=1'
alias debug3='python run.py trainer.gpus=1 trainer.max_epochs=1 +trainer.limit_train_batches=0.1'
alias debug_wandb='python run.py trainer.gpus=1 trainer.max_epochs=1 logger=wandb logger.wandb.project=tests'
```
(these commands will be executed whenever you're openning or switching terminal to folder containing `.autoenv` file)

Expand Down
2 changes: 0 additions & 2 deletions conda_env_gpu.yaml
Original file line number Diff line number Diff line change
Expand Up @@ -7,8 +7,6 @@ channels:
dependencies:
- python=3.8
- pip
- notebook
- ipython
- cudatoolkit
- pytorch=1.8.1
- torchvision=0.9.1
Expand Down
27 changes: 13 additions & 14 deletions configs/callbacks/default.yaml
Original file line number Diff line number Diff line change
@@ -1,17 +1,16 @@
model_checkpoint:
_target_: pytorch_lightning.callbacks.ModelCheckpoint
monitor: "val/acc" # name of the logged metric which determines when model is improving
save_top_k: 1 # save k best models (determined by above metric)
save_last: True # additionaly always save model from last epoch
mode: "max" # can be "max" or "min"
verbose: False
dirpath: 'checkpoints/'
filename: '{epoch:02d}'

_target_: pytorch_lightning.callbacks.ModelCheckpoint
monitor: "val/acc" # name of the logged metric which determines when model is improving
save_top_k: 1 # save k best models (determined by above metric)
save_last: True # additionaly always save model from last epoch
mode: "max" # can be "max" or "min"
verbose: False
dirpath: "checkpoints/"
filename: "{epoch:02d}"

early_stopping:
_target_: pytorch_lightning.callbacks.EarlyStopping
monitor: "val/acc" # name of the logged metric which determines when model is improving
patience: 100 # how many epochs of not improving until training stops
mode: "max" # can be "max" or "min"
min_delta: 0 # minimum change in the monitored metric needed to qualify as an improvement
_target_: pytorch_lightning.callbacks.EarlyStopping
monitor: "val/acc" # name of the logged metric which determines when model is improving
patience: 100 # how many epochs of not improving until training stops
mode: "max" # can be "max" or "min"
min_delta: 0 # minimum change in the monitored metric needed to qualify as an improvement
34 changes: 14 additions & 20 deletions configs/callbacks/wandb.yaml
Original file line number Diff line number Diff line change
@@ -1,32 +1,26 @@
defaults:
- default.yaml

- default.yaml

watch_model:
_target_: src.callbacks.wandb_callbacks.WatchModelWithWandb
log: "all"
log_freq: 100

_target_: src.callbacks.wandb_callbacks.WatchModel
log: "all"
log_freq: 100

upload_code_as_artifact:
_target_: src.callbacks.wandb_callbacks.UploadCodeToWandbAsArtifact
code_dir: ${work_dir}/src

_target_: src.callbacks.wandb_callbacks.UploadCodeAsArtifact
code_dir: ${work_dir}/src

upload_ckpts_as_artifact:
_target_: src.callbacks.wandb_callbacks.UploadCheckpointsToWandbAsArtifact
ckpt_dir: "checkpoints/"
upload_best_only: True

_target_: src.callbacks.wandb_callbacks.UploadCheckpointsAsArtifact
ckpt_dir: "checkpoints/"
upload_best_only: True

log_f1_precision_recall_heatmap:
_target_: src.callbacks.wandb_callbacks.LogF1PrecRecHeatmapToWandb

_target_: src.callbacks.wandb_callbacks.LogF1PrecRecHeatmap

log_confusion_matrix:
_target_: src.callbacks.wandb_callbacks.LogConfusionMatrixToWandb

_target_: src.callbacks.wandb_callbacks.LogConfusionMatrix

log_images_with_predictions:
_target_: src.callbacks.wandb_callbacks.ImagePredictionLogger
num_samples: 8
log_image_predictions:
_target_: src.callbacks.wandb_callbacks.LogImagePredictions
num_samples: 8
Loading

0 comments on commit 70ab061

Please sign in to comment.