-
Notifications
You must be signed in to change notification settings - Fork 519
Commit
This commit does not belong to any branch on this repository, and may belong to a fork outside of the repository.
- Loading branch information
Showing
1 changed file
with
128 additions
and
0 deletions.
There are no files selected for viewing
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
Original file line number | Diff line number | Diff line change |
---|---|---|
@@ -0,0 +1,128 @@ | ||
import json | ||
|
||
import matplotlib.pyplot as plt | ||
import numpy as np | ||
import seaborn as sns | ||
|
||
from olmo.scaling.scaling_laws.utils import ( | ||
FinalConfig, | ||
chinchilla_flops_fit, | ||
chinchilla_fit, | ||
get_flops_data_by_name, | ||
get_coefficients_huber, | ||
get_coefficients, | ||
grad_chinchilla_flops_fit, | ||
parse_args, | ||
) | ||
|
||
MARKERS = ["s", "P", "p", "*"] | ||
|
||
|
||
def main(): | ||
args = parse_args() | ||
|
||
with open(args.config_path) as f: | ||
configs = json.load(f) | ||
configs = {name: FinalConfig(**config) for name, config in configs.items()} | ||
|
||
data_by_name = get_flops_data_by_name(configs, args.keys, num_to_avg=args.num_to_avg) | ||
|
||
sns.set_style("whitegrid") | ||
|
||
plt.figure(figsize=(6, 4.5)) | ||
|
||
train_fs, train_ys = [], [] | ||
for name, data in data_by_name.items(): | ||
config = configs[name] | ||
if config.mode == "train": | ||
train_fs += data["fs"] | ||
train_ys += data["ys"] | ||
|
||
# fit the parameters | ||
# coefficients = get_coefficients_huber( | ||
# train_fs, | ||
# train_ys, | ||
# chinchilla_flops_fit, | ||
# grad_chinchilla_flops_fit, | ||
# p0=[-3.0, 0.09, 0.1], | ||
# bounds=[(None, None), (None, None), (None, None)], | ||
# max_iter=100000, | ||
# ) | ||
|
||
coefficients = get_coefficients(train_fs, train_ys, chinchilla_fit, p0=[-3.0, 0.09, 0.1]) | ||
|
||
a, b, E = coefficients | ||
|
||
# make predictions | ||
predicted_data_by_name = {} | ||
plotted_predicted_data_by_name = {} | ||
for name, data in data_by_name.items(): | ||
config = configs[name] | ||
predicted_data_by_name[name] = { | ||
"fs": data["fs"], | ||
"ys": [chinchilla_flops_fit(flops, coefficients) for flops in data["fs"]], | ||
} | ||
fs = np.linspace(min(data["fs"]), max(data["fs"]), 100) | ||
plotted_predicted_data_by_name[name] = { | ||
"fs": fs, | ||
"ys": [chinchilla_flops_fit(flops, coefficients) for flops in fs], | ||
} | ||
|
||
# plot the actual data | ||
for name, data in data_by_name.items(): | ||
config = configs[name] | ||
# plt.scatter(data["ds"], data["ys"], color="white", edgecolors=config.color, label=config.label, s=10) | ||
for i, (f, y) in enumerate(zip(data["fs"], data["ys"])): | ||
plt.scatter(f, y, color=config.color, marker=MARKERS[i], s=50) | ||
|
||
predicted_data = predicted_data_by_name[name] | ||
for f, y, y_pred in zip(data["fs"], data["ys"], predicted_data["ys"]): | ||
rel_error = (y_pred - y) / y | ||
plt.annotate( | ||
f"{rel_error * 100:+.1f}%", | ||
(f, y), | ||
textcoords="offset points", | ||
xytext=(6, 6), | ||
ha="center", | ||
fontsize=8, | ||
color=config.color, | ||
) | ||
|
||
# plot the fitted curve | ||
for name, data in plotted_predicted_data_by_name.items(): | ||
config = configs[name] | ||
plt.plot( | ||
data["fs"], | ||
data["ys"], | ||
color=config.color, | ||
linestyle="--", | ||
linewidth=2.0, | ||
label=f'{config.label} ({"fitted" if config.mode == "train" else "predicted"})', | ||
) | ||
plt.text( | ||
x=0.20, | ||
y=0.55, | ||
s=f"L(F) = {a:.2f} F ^ {b:.2f} + {E:.2f}", | ||
fontsize=10, | ||
transform=plt.gca().transAxes, | ||
) | ||
|
||
plt.xscale("log") | ||
plt.legend(loc="upper right", ncols=1, fontsize=10) | ||
plt.xlabel("Flops (F)") | ||
plt.ylabel("Loss") | ||
plt.title(args.key) | ||
plt.savefig(args.output_path, dpi=300, bbox_inches="tight") | ||
|
||
# y_1b_3T = chinchilla_flops_fit([1176832000, 3e12], coefficients) | ||
# print(f"Predicted final loss for 1b-3T: {y_1b_3T:.3f}") | ||
# y_7b_2T = chinchilla_flops_fit([6682316800, 2e12], coefficients) | ||
# print(f"Predicted final loss for 7b-2T: {y_7b_2T:.3f}") | ||
# y_7b_3T = chinchilla_flops_fit([6682316800, 3e12], coefficients) | ||
# print(f"Predicted final loss for 7b-3T: {y_7b_3T:.3f}") | ||
# y_13b_5T = chinchilla_flops_fit([13e9, 5e12], coefficients) | ||
# print(f"Predicted final loss for 13b-5T: {y_13b_5T:.3f}") | ||
|
||
|
||
if __name__ == "__main__": | ||
main() |