Skip to content
New issue

Have a question about this project? Sign up for a free GitHub account to open an issue and contact its maintainers and the community.

By clicking “Sign up for GitHub”, you agree to our terms of service and privacy statement. We’ll occasionally send you account related emails.

Already on GitHub? Sign in to your account

Allows use of pydantic 2 by dependents. #283

Merged
merged 2 commits into from
Jun 5, 2024
Merged
Show file tree
Hide file tree
Changes from 1 commit
Commits
File filter

Filter by extension

Filter by extension


Conversations
Failed to load comments.
Loading
Jump to
Jump to file
Failed to load files.
Loading
Diff view
Diff view
21 changes: 16 additions & 5 deletions pyproject.toml
Original file line number Diff line number Diff line change
@@ -1,6 +1,6 @@
[project]
name = 'mmda'
version = '0.9.17'
version = '0.9.18'
description = 'MMDA - multimodal document analysis'
authors = [
{name = 'Allen Institute for Artificial Intelligence', email = '[email protected]'},
Expand All @@ -14,7 +14,7 @@ dependencies = [
'pdfplumber==0.7.4',
'requests',
'pandas<2',
'pydantic<2',
'pydantic[settings]>=1,<3',
'ncls==0.0.66',
'necessary>=0.3.2',
]
Expand Down Expand Up @@ -73,13 +73,15 @@ pysbd_predictors = [
'pysbd',
]
heuristic_predictors = [
'tokenizers'
'tokenizers',
'pydantic>=1,<2',
]
lp_predictors = [
'layoutparser',
'torch',
'torchvision',
'effdet',
'pydantic>=1,<2'
]
hf_predictors = [
'torch',
Expand All @@ -89,38 +91,45 @@ hf_predictors = [
vila_predictors = [
'vila>=0.5,<0.6',
'transformers<4.34.0',
'pydantic>=1,<2',
]
mention_predictor = [
'transformers[torch]',
'optimum[onnxruntime]'
'optimum[onnxruntime]',
'pydantic>=1,<2',
]
mention_predictor_gpu = [
'transformers[torch]',
'optimum[onnxruntime-gpu]',
'pydantic>=1,<2',
]
bibentry_predictor = [
'transformers',
'unidecode',
'torch',
'optimum[onnxruntime]',
'pydantic>=1,<2',
]
bibentry_predictor_gpu = [
'transformers',
'unidecode',
'torch',
'optimum[onnxruntime-gpu]',
'pydantic>=1,<2'
]
bibentry_detection_predictor = [
'Pillow<10',
'layoutparser',
'torch==1.8.0+cu111',
'torchvision==0.9.0+cu111',
'pydantic<=1,<2',
]
citation_links = [
'numpy',
'thefuzz[speedup]',
'scikit-learn',
'xgboost',
'pydantic>=1,<2',
]
section_nesting = [
'numpy',
Expand All @@ -129,12 +138,14 @@ section_nesting = [
]
figure_table_predictors = [
'scipy',
'pydantic>=1,<2',
]
svm_word_predictor = [
'scikit-learn',
'scipy',
'numpy',
'tokenizers'
'tokenizers',
'pydantic>=1,<2',
]
recipes = [
'layoutparser',
Expand Down
26 changes: 16 additions & 10 deletions src/ai2_internal/api.py
Original file line number Diff line number Diff line change
@@ -1,10 +1,10 @@
from typing import List, Optional, Type
from typing import Any, List, Optional, Type

from pydantic import BaseModel, Extra, Field
from pydantic.fields import ModelField

import mmda.types.annotation as mmda_ann


__all__ = ["BoxGroup", "SpanGroup"]


Expand Down Expand Up @@ -34,7 +34,7 @@ def to_mmda(self) -> mmda_ann.Box:
class Span(BaseModel):
start: int
end: int
box: Optional[Box]
box: Optional[Box] = None

@classmethod
def from_mmda(cls, span: mmda_ann.Span) -> "Span":
Expand Down Expand Up @@ -72,14 +72,20 @@ class Annotation(BaseModel, extra=Extra.ignore):

@classmethod
def get_metadata_cls(cls) -> Type[Attributes]:
attrs_field: ModelField = cls.__fields__["attributes"]
attrs_field = cls.__fields__["attributes"]

# pydantic v2
if hasattr(attrs_field, "annotation"):
return attrs_field.annotation

# pydantic v1
return attrs_field.type_


class BoxGroup(Annotation):
boxes: List[Box]
id: Optional[int]
type: Optional[str]
id: Optional[int] = None
type: Optional[str] = None

@classmethod
def from_mmda(cls, box_group: mmda_ann.BoxGroup) -> "BoxGroup":
Expand Down Expand Up @@ -109,10 +115,10 @@ def to_mmda(self) -> mmda_ann.BoxGroup:

class SpanGroup(Annotation):
spans: List[Span]
box_group: Optional[BoxGroup]
id: Optional[int]
type: Optional[str]
text: Optional[str]
box_group: Optional[BoxGroup] = None
id: Optional[int] = None
type: Optional[str] = None
text: Optional[str] = None

@classmethod
def from_mmda(cls, span_group: mmda_ann.SpanGroup) -> "SpanGroup":
Expand Down
7 changes: 3 additions & 4 deletions src/mmda/featurizers/citation_link_featurizers.py
Original file line number Diff line number Diff line change
@@ -1,6 +1,5 @@
import numpy as np
import pandas as pd
from pydantic import BaseModel
import re
from thefuzz import fuzz
from typing import List, Tuple, Dict
Expand Down Expand Up @@ -49,7 +48,7 @@ def featurize(possible_links: List[CitationLink]) -> pd.DataFrame:
df[JACCARD_ALPHA] = df.apply(lambda row: jaccard_alpha(row['source_text'], row['target_text']), axis=1)
df[MATCH_FIRST_TOKEN] = df.apply(lambda row: match_first_token(row['source_text'], row['target_text']), axis=1)
df[FIRST_POSITION] = df.apply(lambda row: first_position(row['source_text'], row['target_text']), axis=1)

# drop text columns
X_features = df.drop(columns=['source_text', 'target_text'])
return X_features
Expand Down Expand Up @@ -106,7 +105,7 @@ def match_numeric(source: str, target: str) -> float:
for number in source_numerics:
found = number in target_numerics
token_found.append(found)

if False not in token_found:
return 1
else:
Expand Down Expand Up @@ -149,7 +148,7 @@ def match_source_tokens(source: str, target: str) -> float:
if token != 'et' and token != 'al' and token != 'and':
found = token in target_tokens
token_found.append(found)

if False not in token_found:
return 1
else:
Expand Down
Loading