-
Notifications
You must be signed in to change notification settings - Fork 21
Commit
This commit does not belong to any branch on this repository, and may belong to a fork outside of the repository.
- Loading branch information
Showing
1 changed file
with
199 additions
and
0 deletions.
There are no files selected for viewing
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
Original file line number | Diff line number | Diff line change |
---|---|---|
@@ -0,0 +1,199 @@ | ||
import logging | ||
|
||
import icub_models | ||
import idyntree.swig as idyntree | ||
import jax.numpy as jnp | ||
import numpy as np | ||
import pytest | ||
from jax import config | ||
|
||
import adam | ||
from adam.geometry import utils | ||
from adam.pytorch import KinDynComputationsBatch | ||
from adam.numpy import KinDynComputations | ||
import torch | ||
|
||
np.random.seed(42) | ||
config.update("jax_enable_x64", True) | ||
|
||
model_path = str(icub_models.get_model_file("iCubGazeboV2_5")) | ||
|
||
joints_name_list = [ | ||
"torso_pitch", | ||
"torso_roll", | ||
"torso_yaw", | ||
"l_shoulder_pitch", | ||
"l_shoulder_roll", | ||
"l_shoulder_yaw", | ||
"l_elbow", | ||
"r_shoulder_pitch", | ||
"r_shoulder_roll", | ||
"r_shoulder_yaw", | ||
"r_elbow", | ||
"l_hip_pitch", | ||
"l_hip_roll", | ||
"l_hip_yaw", | ||
"l_knee", | ||
"l_ankle_pitch", | ||
"l_ankle_roll", | ||
"r_hip_pitch", | ||
"r_hip_roll", | ||
"r_hip_yaw", | ||
"r_knee", | ||
"r_ankle_pitch", | ||
"r_ankle_roll", | ||
] | ||
|
||
|
||
comp = KinDynComputationsBatch(model_path, joints_name_list) | ||
comp.set_frame_velocity_representation(adam.Representations.MIXED_REPRESENTATION) | ||
|
||
comp_np = KinDynComputations(model_path, joints_name_list) | ||
comp_np.set_frame_velocity_representation(adam.Representations.MIXED_REPRESENTATION) | ||
|
||
n_dofs = len(joints_name_list) | ||
# base pose quantities | ||
xyz = (np.random.rand(3) - 0.5) * 5 | ||
rpy = (np.random.rand(3) - 0.5) * 5 | ||
base_vel = (np.random.rand(6) - 0.5) * 5 | ||
# joints quantitites | ||
joints_val = (np.random.rand(n_dofs) - 0.5) * 5 | ||
joints_dot_val = (np.random.rand(n_dofs) - 0.5) * 5 | ||
|
||
g = np.array([0, 0, -9.80665]) | ||
H_b = utils.H_from_Pos_RPY(xyz, rpy) | ||
n_samples = 10 | ||
|
||
H_b_batch = torch.tile(torch.tensor(H_b), (n_samples, 1, 1)).requires_grad_() | ||
joints_val_batch = torch.tile(torch.tensor(joints_val), (n_samples, 1)).requires_grad_() | ||
base_vel_batch = torch.tile(torch.tensor(base_vel), (n_samples, 1)).requires_grad_() | ||
joints_dot_val_batch = torch.tile( | ||
torch.tensor(joints_dot_val), (n_samples, 1) | ||
).requires_grad_() | ||
|
||
|
||
# Check if the quantities are the correct testing against the numpy implementation | ||
# Check if the dimensions are correct (batch dimension) | ||
# Check if the gradient is computable | ||
|
||
|
||
def test_mass_matrix(): | ||
mass_matrix = comp.mass_matrix(H_b_batch, joints_val_batch) | ||
mass_matrix_np = comp_np.mass_matrix(H_b, joints_val) | ||
assert np.allclose(mass_matrix[0].detach().numpy(), mass_matrix_np) | ||
assert mass_matrix.shape == (n_samples, n_dofs + 6, n_dofs + 6) | ||
# check if the gradient is computable | ||
mass_matrix.sum().backward() | ||
return True | ||
# assert torch.autograd.gradcheck( | ||
# comp.mass_matrix, (H_b_batch, joints_val_batch), eps=1e-6, atol=1e-4 | ||
# ) | ||
# return True | ||
|
||
|
||
def test_centroidal_momentum_matrix(): | ||
centroidal_momentum_matrix = comp.centroidal_momentum_matrix( | ||
H_b_batch, joints_val_batch | ||
) | ||
centroidal_momentum_matrix_np = comp_np.centroidal_momentum_matrix(H_b, joints_val) | ||
assert np.allclose( | ||
centroidal_momentum_matrix[0].detach().numpy(), centroidal_momentum_matrix_np | ||
) | ||
assert centroidal_momentum_matrix.shape == (n_samples, 6, n_dofs + 6) | ||
centroidal_momentum_matrix.sum().backward() | ||
return True | ||
|
||
|
||
def test_relative_jacobian(): | ||
frame = "l_sole" | ||
relative_jacobian = comp.relative_jacobian(frame, joints_val_batch) | ||
assert np.allclose( | ||
relative_jacobian[0].detach().numpy(), | ||
comp_np.relative_jacobian(frame, joints_val), | ||
) | ||
assert relative_jacobian.shape == (n_samples, 6, n_dofs) | ||
relative_jacobian.sum().backward() | ||
return True | ||
|
||
|
||
def test_jacobian_dot(): | ||
frame = "l_sole" | ||
jacobian_dot = comp.jacobian_dot( | ||
frame, H_b_batch, joints_val_batch, base_vel_batch, joints_dot_val_batch | ||
) | ||
assert np.allclose( | ||
jacobian_dot[0].detach().numpy(), | ||
comp_np.jacobian_dot(frame, H_b, joints_val, base_vel, joints_dot_val), | ||
) | ||
assert jacobian_dot.shape == (n_samples, 6, n_dofs + 6) | ||
jacobian_dot.sum().backward() | ||
return True | ||
|
||
|
||
def test_forward_kineamtics(): | ||
frame = "l_sole" | ||
forward_kinematics = comp.forward_kinematics(frame, H_b_batch, joints_val_batch) | ||
assert np.allclose( | ||
forward_kinematics[0].detach().numpy(), | ||
comp_np.forward_kinematics(frame, H_b, joints_val), | ||
) | ||
assert forward_kinematics.shape == (n_samples, 4, 4) | ||
forward_kinematics.sum().backward() | ||
return True | ||
|
||
|
||
def test_jacobian(): | ||
frame = "l_sole" | ||
jacobian = comp.jacobian(frame, H_b_batch, joints_val_batch) | ||
assert np.allclose( | ||
jacobian[0].detach().numpy(), comp_np.jacobian(frame, H_b, joints_val) | ||
) | ||
assert jacobian.shape == (n_samples, 6, n_dofs + 6) | ||
jacobian.sum().backward() | ||
return True | ||
|
||
|
||
def test_bias_force(): | ||
bias_force = comp.bias_force( | ||
H_b_batch, joints_val_batch, base_vel_batch, joints_dot_val_batch | ||
) | ||
assert np.allclose( | ||
bias_force[0].detach().numpy(), | ||
comp_np.bias_force(H_b, joints_val, base_vel, joints_dot_val), | ||
) | ||
assert bias_force.shape == (n_samples, n_dofs + 6) | ||
bias_force.sum().backward() | ||
return True | ||
|
||
|
||
def test_coriolis_term(): | ||
coriolis_term = comp.coriolis_term( | ||
H_b_batch, joints_val_batch, base_vel_batch, joints_dot_val_batch | ||
) | ||
assert np.allclose( | ||
coriolis_term[0].detach().numpy(), | ||
comp_np.coriolis_term(H_b, joints_val, base_vel, joints_dot_val), | ||
) | ||
assert coriolis_term.shape == (n_samples, n_dofs + 6) | ||
coriolis_term.sum().backward() | ||
return True | ||
|
||
|
||
def test_gravity_term(): | ||
gravity_term = comp.gravity_term(H_b_batch, joints_val_batch) | ||
assert np.allclose( | ||
gravity_term[0].detach().numpy(), comp_np.gravity_term(H_b, joints_val) | ||
) | ||
assert gravity_term.shape == (n_samples, n_dofs + 6) | ||
gravity_term.sum().backward() | ||
return True | ||
|
||
|
||
def test_CoM_position(): | ||
CoM_position = comp.CoM_position(H_b_batch, joints_val_batch) | ||
assert np.allclose( | ||
CoM_position[0].detach().numpy(), comp_np.CoM_position(H_b, joints_val) | ||
) | ||
assert CoM_position.shape == (n_samples, 3) | ||
CoM_position.sum().backward() | ||
return True |