Skip to content

amikos-tech/chromadbx

Repository files navigation

ChromaX: An experimental utilities package for Chroma vector database

Installation

pip install chromadbx

Features

  • Query Builder - build queries using a builder pattern
  • ID generation - generate IDs for documents
  • Embeddings - generate embeddings for your documents:
    • OnnxRuntime embeddings
    • Llama.cpp embeddings
    • Google Vertex AI embeddings
    • Mistral AI embeddings
    • Cloudflare Workers AI embeddings

Usage

Queries

Supported filters:

  • $eq - equal to (string, int, float)
  • $ne - not equal to (string, int, float)
  • $gt - greater than (int, float)
  • $gte - greater than or equal to (int, float)
  • $lt - less than (int, float)
  • $lte - less than or equal to (int, float)
  • $in - in (list of strings, ints, floats,bools)
  • $nin - not in (list of strings, ints, floats,bools)

Where:

import chromadb

from chromadbx.core.queries import eq, where, ne, and_

client = chromadb.PersistentClient(path="path/to/db")
collection = client.get_collection("collection_name")
collection.query(where=where(and_(eq("a", 1), ne("b", "2"))))
# {'$and': [{'a': ['$eq', 1]}, {'b': ['$ne', '2']}]}

Where Document:

import chromadb

from chromadbx.core.queries import where_document, contains, not_contains, LogicalOperator

client = chromadb.PersistentClient(path="path/to/db")
collection = client.get_collection("collection_name")
collection.query(where_document=where_document(contains("this is a document", "this is another document")))
# {'$and': [{'$contains': 'this is a document'}, {'$contains': 'this is another document'}]}
collection.query(
    where_document=where_document(contains("this is a document", "this is another document", op=LogicalOperator.OR)))
# {'$or': [{'$contains': 'this is a document'}, {'$contains': 'this is another document'}]}

ID Generation

import chromadb
from chromadbx import IDGenerator
from functools import partial
from typing import Generator

def sequential_generator(start: int = 0) -> Generator[str, None, None]:
        _next = start
        while True:
            yield f"{_next}"
            _next += 1
client = chromadb.Client()
col = client.get_or_create_collection("test")
my_docs = [f"Document {_}" for _ in range(10)]
idgen = IDGenerator(len(my_docs), generator=partial(sequential_generator, start=10))
col.add(ids=idgen, documents=my_docs)

UUIDs (default)

import chromadb
from chromadbx import UUIDGenerator

client = chromadb.Client()
col = client.get_or_create_collection("test")
my_docs = [f"Document {_}" for _ in range(10)]
col.add(ids=UUIDGenerator(len(my_docs)), documents=my_docs)

ULIDs

import chromadb
from chromadbx import ULIDGenerator
client = chromadb.Client()
col = client.get_or_create_collection("test")
my_docs = [f"Document {_}" for _ in range(10)]
col.add(ids=ULIDGenerator(len(my_docs)), documents=my_docs)

Hashes

Random SHA256:

import chromadb
from chromadbx import RandomSHA256Generator
client = chromadb.Client()
col = client.get_or_create_collection("test")
my_docs = [f"Document {_}" for _ in range(10)]
col.add(ids=RandomSHA256Generator(len(my_docs)), documents=my_docs)

Document-based SHA256:

import chromadb
from chromadbx import DocumentSHA256Generator
client = chromadb.Client()
col = client.get_or_create_collection("test")
my_docs = [f"Document {_}" for _ in range(10)]
col.add(ids=DocumentSHA256Generator(documents=my_docs), documents=my_docs)

NanoID

import chromadb
from chromadbx import NanoIDGenerator
client = chromadb.Client()
col = client.get_or_create_collection("test")
my_docs = [f"Document {_}" for _ in range(10)]
col.add(ids=NanoIDGenerator(len(my_docs)), documents=my_docs)