Skip to content

amitha-nayak/Fashionista

Repository files navigation

Fashionista

Model architecture:

Mask R-CNN model

SpineNet-143 + FPN backbone

Training:

Pre-trained on the COCO dataset

Image resolution: 1280x1280

Focal loss for the attributes head

Augmentations: random scaling (0.5x - 2.0x), v3 policy from the AutoAugment (modified to support masks)

Setup

https://github.com/tensorflow/tpu/tree/master/tools/ctpu#download

  • Copy and modify a TPU config file

cp tpu_configs/example.json tpu_configs/YOUR_TPU.json

  • Create a VM instance and TPU
export TPU_CONFIG_JSON=tpu_configs/YOUR_TPU.json
./scripts/tpu.sh create

You will automatically log in the VM via SSH.

  • Grant roles/storage.admin the TPU service account (e.g., [email protected]).

  • Install Python dependencies to the VM instance.

cd $HOME
git clone https://github.com/amitha-nayak/Fashionista.git
cd $HOME/kaggle-imaterialist2020-model
./scripts/setup_bashrc.sh
source ~/.bashrc
./scripts/install_requirements.sh

  • Setup is done. Log out from the terminal, and stop the VM and TPU.
./scripts/tpu.sh stop

# or
./scripts/tpu.sh stop --vm
./scripts/tpu.sh stop --tpu

Train

  • Log in to the VM instance via SSH.
./scripts/tpu.sh start
./scripts/tpu.sh ssh
  • Set up iMaterialist dataset.
  • Create TF Records from iMaterialist COCO format annotations
poetry shell

./scripts/create_tf_records.sh \
    train \
    $IMAGE_DIR \
    $COCO_JSON_FILE \
    $OUTPUT_FILE_PREFIX

# e.g.,
./scripts/create_tf_records.sh \
    train \
    ~/iMaterialist/raw/train \
    ~/iMaterialist/raw/instances_attributes_train2020.json \
    gs://yourbucket/tfrecords/train
    

TF Records will be created like gs://yourbucket/tfrecords/train-00001-of-00050.tfrecord.

  • Train a model.
./scripts/train.sh $INPUT_GCS_PATTERN $OUT_GCS_DIR

# e.g.,
./scripts/train.sh \
    gs://yourbucket/tfrecords/train-* \
    gs://yourbucket/model
  

Training artifacts (checkpoints, hyperparmeters, and logs etc) will be dumped into gs://yourbucket/model/.

  • Don't forget to stop your TPU if the training finishes.
./scripts/tpu.sh stop --tpu
  • Note: If the training fails, delete the training artifacts from GCS. Otherwise, the configurations of the failed training will be loaded and it will fail again. For example, tensor's shape mismatch.

Predict

  • Log in to the VM instance via SSH.
./scripts/tpu.sh start --vm
./scripts/tpu.sh ssh
  • Predict for your images
poetry shell

./scripts/predict.sh \
    $MODEL_GCS_DIR \
    $IMAGE_GCS_DIR \
    $TF_RECORD_GCS_DIR \
    $OUT_GCS_DIR

# e.g.,
./scripts/predict.sh \
    gs://yourbucket/model \
    gs://yourbucket/yourdataset/images \
    gs://yourbucket/yourdataset/tfrecords \
    gs://yourbucket/yourdataset/predictions
  • The TPU should be automatically shut down by scripts/predict.sh.

Django UI

  • Log in to the VM instance via SSH.
./scripts/tpu.sh start --vm
./scripts/tpu.sh ssh
  • Run django
cd kaggle-imaterialist2020-model
python3 ../manage.py runserver
  • Don't forget to stop your TPU.
./scripts/tpu.sh stop --tpu
  • Note: to change or add sample images on the website,

use the path ./fash/media/images


All the changes were made on top of the TPU Object Detection and Segmentation Framework.

About

No description, website, or topics provided.

Resources

Stars

Watchers

Forks

Releases

No releases published

Packages

No packages published