-
Notifications
You must be signed in to change notification settings - Fork 1.3k
Commit
This commit does not belong to any branch on this repository, and may belong to a fork outside of the repository.
Introduce new trait based ScalarUDF API
- Loading branch information
Showing
9 changed files
with
535 additions
and
86 deletions.
There are no files selected for viewing
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
Original file line number | Diff line number | Diff line change |
---|---|---|
@@ -0,0 +1,243 @@ | ||
// Licensed to the Apache Software Foundation (ASF) under one | ||
// or more contributor license agreements. See the NOTICE file | ||
// distributed with this work for additional information | ||
// regarding copyright ownership. The ASF licenses this file | ||
// to you under the Apache License, Version 2.0 (the | ||
// "License"); you may not use this file except in compliance | ||
// with the License. You may obtain a copy of the License at | ||
// | ||
// http://www.apache.org/licenses/LICENSE-2.0 | ||
// | ||
// Unless required by applicable law or agreed to in writing, | ||
// software distributed under the License is distributed on an | ||
// "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY | ||
// KIND, either express or implied. See the License for the | ||
// specific language governing permissions and limitations | ||
// under the License. | ||
|
||
use datafusion::{ | ||
arrow::{ | ||
array::{ArrayRef, Float32Array, Float64Array}, | ||
datatypes::DataType, | ||
record_batch::RecordBatch, | ||
}, | ||
logical_expr::Volatility, | ||
}; | ||
use std::any::Any; | ||
|
||
use arrow::array::{new_null_array, Array, AsArray}; | ||
use arrow::compute; | ||
use arrow::datatypes::Float64Type; | ||
use datafusion::error::Result; | ||
use datafusion::prelude::*; | ||
use datafusion_common::{internal_err, ScalarValue}; | ||
use datafusion_expr::{ColumnarValue, ScalarUDF, ScalarUDFImpl, Signature}; | ||
use std::sync::Arc; | ||
|
||
/// This example shows how to use the full ScalarUDFImpl API to implement a user | ||
/// defined function. As in the `simple_udf.rs` example, this struct implements | ||
/// a function that takes two arguments and returns the first argument raised to | ||
/// the power of the second argument `a^b`. | ||
/// | ||
/// To do so, we must implement the `ScalarUDFImpl` trait. | ||
struct PowUdf { | ||
signature: Signature, | ||
aliases: Vec<String>, | ||
} | ||
|
||
impl PowUdf { | ||
/// Create a new instance of the `PowUdf` struct | ||
fn new() -> Self { | ||
Self { | ||
signature: Signature::exact( | ||
// this function will always take two arguments of type f64 | ||
vec![DataType::Float64, DataType::Float64], | ||
// this function is deterministic and will always return the same | ||
// result for the same input | ||
Volatility::Immutable, | ||
), | ||
// we will also add an alias of "my_pow" | ||
aliases: vec!["my_pow".to_string()], | ||
} | ||
} | ||
} | ||
|
||
impl ScalarUDFImpl for PowUdf { | ||
/// We implement as_any so that we can downcast the ScalarUDFImpl trait object | ||
fn as_any(&self) -> &dyn Any { | ||
self | ||
} | ||
|
||
/// Return the name of this function | ||
fn name(&self) -> &str { | ||
"pow" | ||
} | ||
|
||
/// Return the "signature" of this function -- namely what types of arguments it will take | ||
fn signature(&self) -> &Signature { | ||
&self.signature | ||
} | ||
|
||
/// What is the type of value that will be returned by this function? In | ||
/// this case it will always be a constant value, but it could also be a | ||
/// function of the input types. | ||
fn return_type(&self, _arg_types: &[DataType]) -> Result<DataType> { | ||
Ok(DataType::Float64) | ||
} | ||
|
||
/// This is the function that actually calculates the results. | ||
/// | ||
/// This is the same way that functions built into DataFusion are invoked, | ||
/// which permits important special cases when one or both of the arguments | ||
/// are single values (constants). For example `pow(a, 2)` | ||
/// | ||
/// However, it also means the implementation is more complex than when | ||
/// using `create_udf`. | ||
fn invoke(&self, args: &[ColumnarValue]) -> Result<ColumnarValue> { | ||
// DataFusion has arranged for the correct inputs to be passed to this | ||
// function, but we check again to make sure | ||
assert_eq!(args.len(), 2); | ||
let (base, exp) = (&args[0], &args[1]); | ||
assert_eq!(base.data_type(), DataType::Float64); | ||
assert_eq!(exp.data_type(), DataType::Float64); | ||
|
||
match (base, exp) { | ||
// For demonstration purposes we also implement the scalar / scalar | ||
// case here, but it is not typically required for high performance. | ||
// | ||
// For performance it is most important to optimize cases where at | ||
// least one argument is an array. If all arguments are constants, | ||
// the DataFusion expression simplification logic will often invoke | ||
// this path once during planning, and simply use the result during | ||
// execution. | ||
( | ||
ColumnarValue::Scalar(ScalarValue::Float64(base)), | ||
ColumnarValue::Scalar(ScalarValue::Float64(exp)), | ||
) => { | ||
// compute the output. Note DataFusion treats `None` as NULL. | ||
let res = match (base, exp) { | ||
(Some(base), Some(exp)) => Some(base.powf(*exp)), | ||
// one or both arguments were NULL | ||
_ => None, | ||
}; | ||
Ok(ColumnarValue::Scalar(ScalarValue::from(res))) | ||
} | ||
// special case if the exponent is a constant | ||
( | ||
ColumnarValue::Array(base_array), | ||
ColumnarValue::Scalar(ScalarValue::Float64(exp)), | ||
) => { | ||
let result_array = match exp { | ||
// a ^ null = null | ||
None => new_null_array(base_array.data_type(), base_array.len()), | ||
// a ^ exp | ||
Some(exp) => { | ||
// DataFusion has ensured both arguments are Float64: | ||
let base_array = base_array.as_primitive::<Float64Type>(); | ||
// calculate the result for every row. The `unary` very | ||
// fast, "vectorized" code and handles things like null | ||
// values for us. | ||
let res: Float64Array = | ||
compute::unary(base_array, |base| base.powf(*exp)); | ||
Arc::new(res) | ||
} | ||
}; | ||
Ok(ColumnarValue::Array(result_array)) | ||
} | ||
|
||
// special case if the base is a constant (note this code is quite | ||
// similar to the previous case, so we omit comments) | ||
( | ||
ColumnarValue::Scalar(ScalarValue::Float64(base)), | ||
ColumnarValue::Array(exp_array), | ||
) => { | ||
let res = match base { | ||
None => new_null_array(exp_array.data_type(), exp_array.len()), | ||
Some(base) => { | ||
let exp_array = exp_array.as_primitive::<Float64Type>(); | ||
let res: Float64Array = | ||
compute::unary(exp_array, |exp| base.powf(exp)); | ||
Arc::new(res) | ||
} | ||
}; | ||
Ok(ColumnarValue::Array(res)) | ||
} | ||
// Both arguments are arrays s we have to perform the calculation for every row | ||
(ColumnarValue::Array(base_array), ColumnarValue::Array(exp_array)) => { | ||
let res: Float64Array = compute::binary( | ||
base_array.as_primitive::<Float64Type>(), | ||
exp_array.as_primitive::<Float64Type>(), | ||
|base, exp| base.powf(exp), | ||
)?; | ||
Ok(ColumnarValue::Array(Arc::new(res))) | ||
} | ||
// if the types were not float, it is a bug in DataFusion | ||
_ => { | ||
use datafusion_common::DataFusionError; | ||
internal_err!("Invalid argument types to pow function") | ||
} | ||
} | ||
} | ||
|
||
/// We will also add an alias of "my_pow" | ||
fn aliases(&self) -> &[String] { | ||
&self.aliases | ||
} | ||
} | ||
|
||
/// In this example we register `PowUdf` as a user defined function | ||
/// and invoke it via the DataFrame API and SQL | ||
#[tokio::main] | ||
async fn main() -> Result<()> { | ||
let ctx = create_context()?; | ||
|
||
// create the UDF | ||
let pow = ScalarUDF::from(PowUdf::new()); | ||
|
||
// register the UDF with the context so it can be invoked by name and from SQL | ||
ctx.register_udf(pow.clone()); | ||
|
||
// get a DataFrame from the context for scanning the "t" table | ||
let df = ctx.table("t").await?; | ||
|
||
// Call pow(a, 10) using the DataFrame API | ||
let df = df.select(vec![pow.call(vec![col("a"), lit(10i32)])])?; | ||
|
||
// note that the second argument is passed as an i32, not f64. DataFusion | ||
// automatically coerces the types to match the UDF's defined signature. | ||
|
||
// print the results | ||
df.show().await?; | ||
|
||
// You can also invoke both pow(2, 10) and its alias my_pow(a, b) using SQL | ||
let sql_df = ctx.sql("SELECT pow(2, 10), my_pow(a, b) FROM t").await?; | ||
sql_df.show().await?; | ||
|
||
Ok(()) | ||
} | ||
|
||
/// create local execution context with an in-memory table: | ||
/// | ||
/// ```text | ||
/// +-----+-----+ | ||
/// | a | b | | ||
/// +-----+-----+ | ||
/// | 2.1 | 1.0 | | ||
/// | 3.1 | 2.0 | | ||
/// | 4.1 | 3.0 | | ||
/// | 5.1 | 4.0 | | ||
/// +-----+-----+ | ||
/// ``` | ||
fn create_context() -> Result<SessionContext> { | ||
// define data. | ||
let a: ArrayRef = Arc::new(Float32Array::from(vec![2.1, 3.1, 4.1, 5.1])); | ||
let b: ArrayRef = Arc::new(Float64Array::from(vec![1.0, 2.0, 3.0, 4.0])); | ||
let batch = RecordBatch::try_from_iter(vec![("a", a), ("b", b)])?; | ||
|
||
// declare a new context. In spark API, this corresponds to a new spark SQLsession | ||
let ctx = SessionContext::new(); | ||
|
||
// declare a table in memory. In spark API, this corresponds to createDataFrame(...). | ||
ctx.register_batch("t", batch)?; | ||
Ok(ctx) | ||
} |
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
Oops, something went wrong.