-
Notifications
You must be signed in to change notification settings - Fork 1.4k
Commit
This commit does not belong to any branch on this repository, and may belong to a fork outside of the repository.
Create a Priority Queue based Aggregation with
limit
(#7192)
Create a Priority Queue based Aggregation with `limit` (#7192)
- Loading branch information
1 parent
a758270
commit 812864b
Showing
21 changed files
with
2,467 additions
and
24 deletions.
There are no files selected for viewing
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
Original file line number | Diff line number | Diff line change |
---|---|---|
@@ -0,0 +1,239 @@ | ||
// Licensed to the Apache Software Foundation (ASF) under one | ||
// or more contributor license agreements. See the NOTICE file | ||
// distributed with this work for additional information | ||
// regarding copyright ownership. The ASF licenses this file | ||
// to you under the Apache License, Version 2.0 (the | ||
// "License"); you may not use this file except in compliance | ||
// with the License. You may obtain a copy of the License at | ||
// | ||
// http://www.apache.org/licenses/LICENSE-2.0 | ||
// | ||
// Unless required by applicable law or agreed to in writing, | ||
// software distributed under the License is distributed on an | ||
// "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY | ||
// KIND, either express or implied. See the License for the | ||
// specific language governing permissions and limitations | ||
// under the License. | ||
|
||
use arrow::util::pretty::pretty_format_batches; | ||
use arrow::{datatypes::Schema, record_batch::RecordBatch}; | ||
use arrow_array::builder::{Int64Builder, StringBuilder}; | ||
use arrow_schema::{DataType, Field, SchemaRef}; | ||
use criterion::{criterion_group, criterion_main, Criterion}; | ||
use datafusion::physical_plan::{collect, displayable, ExecutionPlan}; | ||
use datafusion::prelude::SessionContext; | ||
use datafusion::{datasource::MemTable, error::Result}; | ||
use datafusion_common::DataFusionError; | ||
use datafusion_execution::config::SessionConfig; | ||
use datafusion_execution::TaskContext; | ||
use rand_distr::Distribution; | ||
use rand_distr::{Normal, Pareto}; | ||
use std::sync::Arc; | ||
use tokio::runtime::Runtime; | ||
|
||
async fn create_context( | ||
limit: usize, | ||
partition_cnt: i32, | ||
sample_cnt: i32, | ||
asc: bool, | ||
use_topk: bool, | ||
) -> Result<(Arc<dyn ExecutionPlan>, Arc<TaskContext>)> { | ||
let (schema, parts) = make_data(partition_cnt, sample_cnt, asc).unwrap(); | ||
let mem_table = Arc::new(MemTable::try_new(schema, parts).unwrap()); | ||
|
||
// Create the DataFrame | ||
let mut cfg = SessionConfig::new(); | ||
let opts = cfg.options_mut(); | ||
opts.optimizer.enable_topk_aggregation = use_topk; | ||
let ctx = SessionContext::with_config(cfg); | ||
let _ = ctx.register_table("traces", mem_table)?; | ||
let sql = format!("select trace_id, max(timestamp_ms) from traces group by trace_id order by max(timestamp_ms) desc limit {limit};"); | ||
let df = ctx.sql(sql.as_str()).await?; | ||
let physical_plan = df.create_physical_plan().await?; | ||
let actual_phys_plan = displayable(physical_plan.as_ref()).indent(true).to_string(); | ||
assert_eq!( | ||
actual_phys_plan.contains(&format!("lim=[{limit}]")), | ||
use_topk | ||
); | ||
|
||
Ok((physical_plan, ctx.task_ctx())) | ||
} | ||
|
||
fn run(plan: Arc<dyn ExecutionPlan>, ctx: Arc<TaskContext>, asc: bool) { | ||
let rt = Runtime::new().unwrap(); | ||
criterion::black_box( | ||
rt.block_on(async { aggregate(plan.clone(), ctx.clone(), asc).await }), | ||
) | ||
.unwrap(); | ||
} | ||
|
||
async fn aggregate( | ||
plan: Arc<dyn ExecutionPlan>, | ||
ctx: Arc<TaskContext>, | ||
asc: bool, | ||
) -> Result<()> { | ||
let batches = collect(plan, ctx).await?; | ||
assert_eq!(batches.len(), 1); | ||
let batch = batches.first().unwrap(); | ||
assert_eq!(batch.num_rows(), 10); | ||
|
||
let actual = format!("{}", pretty_format_batches(&batches)?); | ||
let expected_asc = r#" | ||
+----------------------------------+--------------------------+ | ||
| trace_id | MAX(traces.timestamp_ms) | | ||
+----------------------------------+--------------------------+ | ||
| 5868861a23ed31355efc5200eb80fe74 | 16909009999999 | | ||
| 4040e64656804c3d77320d7a0e7eb1f0 | 16909009999998 | | ||
| 02801bbe533190a9f8713d75222f445d | 16909009999997 | | ||
| 9e31b3b5a620de32b68fefa5aeea57f1 | 16909009999996 | | ||
| 2d88a860e9bd1cfaa632d8e7caeaa934 | 16909009999995 | | ||
| a47edcef8364ab6f191dd9103e51c171 | 16909009999994 | | ||
| 36a3fa2ccfbf8e00337f0b1254384db6 | 16909009999993 | | ||
| 0756be84f57369012e10de18b57d8a2f | 16909009999992 | | ||
| d4d6bf9845fa5897710e3a8db81d5907 | 16909009999991 | | ||
| 3c2cc1abe728a66b61e14880b53482a0 | 16909009999990 | | ||
+----------------------------------+--------------------------+ | ||
"# | ||
.trim(); | ||
if asc { | ||
assert_eq!(actual.trim(), expected_asc); | ||
} | ||
|
||
Ok(()) | ||
} | ||
|
||
fn make_data( | ||
partition_cnt: i32, | ||
sample_cnt: i32, | ||
asc: bool, | ||
) -> Result<(Arc<Schema>, Vec<Vec<RecordBatch>>), DataFusionError> { | ||
use rand::Rng; | ||
use rand::SeedableRng; | ||
|
||
// constants observed from trace data | ||
let simultaneous_group_cnt = 2000; | ||
let fitted_shape = 12f64; | ||
let fitted_scale = 5f64; | ||
let mean = 0.1; | ||
let stddev = 1.1; | ||
let pareto = Pareto::new(fitted_scale, fitted_shape).unwrap(); | ||
let normal = Normal::new(mean, stddev).unwrap(); | ||
let mut rng = rand::rngs::SmallRng::from_seed([0; 32]); | ||
|
||
// populate data | ||
let schema = test_schema(); | ||
let mut partitions = vec![]; | ||
let mut cur_time = 16909000000000i64; | ||
for _ in 0..partition_cnt { | ||
let mut id_builder = StringBuilder::new(); | ||
let mut ts_builder = Int64Builder::new(); | ||
let gen_id = |rng: &mut rand::rngs::SmallRng| { | ||
rng.gen::<[u8; 16]>() | ||
.iter() | ||
.map(|b| format!("{:02x}", b)) | ||
.collect::<String>() | ||
}; | ||
let gen_sample_cnt = | ||
|mut rng: &mut rand::rngs::SmallRng| pareto.sample(&mut rng).ceil() as u32; | ||
let mut group_ids = (0..simultaneous_group_cnt) | ||
.map(|_| gen_id(&mut rng)) | ||
.collect::<Vec<_>>(); | ||
let mut group_sample_cnts = (0..simultaneous_group_cnt) | ||
.map(|_| gen_sample_cnt(&mut rng)) | ||
.collect::<Vec<_>>(); | ||
for _ in 0..sample_cnt { | ||
let random_index = rng.gen_range(0..simultaneous_group_cnt); | ||
let trace_id = &mut group_ids[random_index]; | ||
let sample_cnt = &mut group_sample_cnts[random_index]; | ||
*sample_cnt -= 1; | ||
if *sample_cnt == 0 { | ||
*trace_id = gen_id(&mut rng); | ||
*sample_cnt = gen_sample_cnt(&mut rng); | ||
} | ||
|
||
id_builder.append_value(trace_id); | ||
ts_builder.append_value(cur_time); | ||
|
||
if asc { | ||
cur_time += 1; | ||
} else { | ||
let samp: f64 = normal.sample(&mut rng); | ||
let samp = samp.round(); | ||
cur_time += samp as i64; | ||
} | ||
} | ||
|
||
// convert to MemTable | ||
let id_col = Arc::new(id_builder.finish()); | ||
let ts_col = Arc::new(ts_builder.finish()); | ||
let batch = RecordBatch::try_new(schema.clone(), vec![id_col, ts_col])?; | ||
partitions.push(vec![batch]); | ||
} | ||
Ok((schema, partitions)) | ||
} | ||
|
||
fn test_schema() -> SchemaRef { | ||
Arc::new(Schema::new(vec![ | ||
Field::new("trace_id", DataType::Utf8, false), | ||
Field::new("timestamp_ms", DataType::Int64, false), | ||
])) | ||
} | ||
|
||
fn criterion_benchmark(c: &mut Criterion) { | ||
let limit = 10; | ||
let partitions = 10; | ||
let samples = 1_000_000; | ||
|
||
let rt = Runtime::new().unwrap(); | ||
let topk_real = rt.block_on(async { | ||
create_context(limit, partitions, samples, false, true) | ||
.await | ||
.unwrap() | ||
}); | ||
let topk_asc = rt.block_on(async { | ||
create_context(limit, partitions, samples, true, true) | ||
.await | ||
.unwrap() | ||
}); | ||
let real = rt.block_on(async { | ||
create_context(limit, partitions, samples, false, false) | ||
.await | ||
.unwrap() | ||
}); | ||
let asc = rt.block_on(async { | ||
create_context(limit, partitions, samples, true, false) | ||
.await | ||
.unwrap() | ||
}); | ||
|
||
c.bench_function( | ||
format!("aggregate {} time-series rows", partitions * samples).as_str(), | ||
|b| b.iter(|| run(real.0.clone(), real.1.clone(), false)), | ||
); | ||
|
||
c.bench_function( | ||
format!("aggregate {} worst-case rows", partitions * samples).as_str(), | ||
|b| b.iter(|| run(asc.0.clone(), asc.1.clone(), true)), | ||
); | ||
|
||
c.bench_function( | ||
format!( | ||
"top k={limit} aggregate {} time-series rows", | ||
partitions * samples | ||
) | ||
.as_str(), | ||
|b| b.iter(|| run(topk_real.0.clone(), topk_real.1.clone(), false)), | ||
); | ||
|
||
c.bench_function( | ||
format!( | ||
"top k={limit} aggregate {} worst-case rows", | ||
partitions * samples | ||
) | ||
.as_str(), | ||
|b| b.iter(|| run(topk_asc.0.clone(), topk_asc.1.clone(), true)), | ||
); | ||
} | ||
|
||
criterion_group!(benches, criterion_benchmark); | ||
criterion_main!(benches); |
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
Oops, something went wrong.