Skip to content

Commit

Permalink
docs: add docs and example showing how to get the expression data type (
Browse files Browse the repository at this point in the history
#9118)

* add docs showing examples of getting a data type of the logical expression

Signed-off-by: Nikolay Ulmasov <[email protected]>

* fix references in docsctings

Signed-off-by: Nikolay Ulmasov <[email protected]>

* implement minor changes suggested after the code review

Signed-off-by: Nikolay Ulmasov <[email protected]>

---------

Signed-off-by: Nikolay Ulmasov <[email protected]>
  • Loading branch information
r3stl355 authored Feb 4, 2024
1 parent 5f18aa7 commit 86a2ab0
Show file tree
Hide file tree
Showing 3 changed files with 99 additions and 0 deletions.
46 changes: 46 additions & 0 deletions datafusion-examples/examples/expr_api.rs
Original file line number Diff line number Diff line change
Expand Up @@ -18,6 +18,7 @@
use arrow::array::{BooleanArray, Int32Array};
use arrow::record_batch::RecordBatch;
use datafusion::arrow::datatypes::{DataType, Field, Schema, TimeUnit};
use datafusion::common::{DFField, DFSchema};
use datafusion::error::Result;
use datafusion::optimizer::simplify_expressions::{ExprSimplifier, SimplifyContext};
use datafusion::physical_expr::execution_props::ExecutionProps;
Expand All @@ -29,6 +30,7 @@ use datafusion_common::{ScalarValue, ToDFSchema};
use datafusion_expr::expr::BinaryExpr;
use datafusion_expr::interval_arithmetic::Interval;
use datafusion_expr::{ColumnarValue, ExprSchemable, Operator};
use std::collections::HashMap;
use std::sync::Arc;

/// This example demonstrates the DataFusion [`Expr`] API.
Expand All @@ -45,6 +47,7 @@ use std::sync::Arc;
/// 2. Evaluate [`Exprs`] against data: [`evaluate_demo`]
/// 3. Simplify expressions: [`simplify_demo`]
/// 4. Analyze predicates for boundary ranges: [`range_analysis_demo`]
/// 5. Get the types of the expressions: [`expression_type_demo`]
#[tokio::main]
async fn main() -> Result<()> {
// The easiest way to do create expressions is to use the
Expand All @@ -68,6 +71,9 @@ async fn main() -> Result<()> {
// See how to analyze ranges in expressions
range_analysis_demo()?;

// See how to determine the data types of expressions
expression_type_demo()?;

Ok(())
}

Expand Down Expand Up @@ -256,3 +262,43 @@ pub fn physical_expr(schema: &Schema, expr: Expr) -> Result<Arc<dyn PhysicalExpr

create_physical_expr(&expr, df_schema.as_ref(), &props)
}

/// This function shows how to use `Expr::get_type` to retrieve the DataType
/// of an expression
fn expression_type_demo() -> Result<()> {
let expr = col("c");

// To determine the DataType of an expression, DataFusion must know the
// types of the input expressions. You can provide this information using
// a schema. In this case we create a schema where the column `c` is of
// type Utf8 (a String / VARCHAR)
let schema = DFSchema::new_with_metadata(
vec![DFField::new_unqualified("c", DataType::Utf8, true)],
HashMap::new(),
)
.unwrap();
assert_eq!("Utf8", format!("{}", expr.get_type(&schema).unwrap()));

// Using a schema where the column `foo` is of type Int32
let schema = DFSchema::new_with_metadata(
vec![DFField::new_unqualified("c", DataType::Int32, true)],
HashMap::new(),
)
.unwrap();
assert_eq!("Int32", format!("{}", expr.get_type(&schema).unwrap()));

// Get the type of an expression that adds 2 columns. Adding an Int32
// and Float32 results in Float32 type
let expr = col("c1") + col("c2");
let schema = DFSchema::new_with_metadata(
vec![
DFField::new_unqualified("c1", DataType::Int32, true),
DFField::new_unqualified("c2", DataType::Float32, true),
],
HashMap::new(),
)
.unwrap();
assert_eq!("Float32", format!("{}", expr.get_type(&schema).unwrap()));

Ok(())
}
25 changes: 25 additions & 0 deletions datafusion/expr/src/expr_schema.rs
Original file line number Diff line number Diff line change
Expand Up @@ -58,6 +58,31 @@ impl ExprSchemable for Expr {
///
/// Note: [DFSchema] implements [ExprSchema].
///
/// # Examples
///
/// ## Get the type of an expression that adds 2 columns. Adding an Int32
/// ## and Float32 results in Float32 type
///
/// ```
/// # use arrow::datatypes::DataType;
/// # use datafusion_common::{DFField, DFSchema};
/// # use datafusion_expr::{col, ExprSchemable};
/// # use std::collections::HashMap;
///
/// fn main() {
/// let expr = col("c1") + col("c2");
/// let schema = DFSchema::new_with_metadata(
/// vec![
/// DFField::new_unqualified("c1", DataType::Int32, true),
/// DFField::new_unqualified("c2", DataType::Float32, true),
/// ],
/// HashMap::new(),
/// )
/// .unwrap();
/// assert_eq!("Float32", format!("{}", expr.get_type(&schema).unwrap()));
/// }
/// ```
///
/// # Errors
///
/// This function errors when it is not possible to compute its
Expand Down
28 changes: 28 additions & 0 deletions docs/source/library-user-guide/working-with-exprs.md
Original file line number Diff line number Diff line change
Expand Up @@ -180,6 +180,34 @@ Projection: Int64(1) + Int64(1) AS added_one

I.e. the `add_one` UDF has been inlined into the projection.

## Getting the data type of the expression

The `arrow::datatypes::DataType` of the expression can be obtained by calling the `get_type` given something that implements `Expr::Schemable`, for example a `DFschema` object:

```rust
use arrow_schema::DataType;
use datafusion::common::{DFField, DFSchema};
use datafusion::logical_expr::{col, ExprSchemable};
use std::collections::HashMap;

let expr = col("c1") + col("c2");
let schema = DFSchema::new_with_metadata(
vec![
DFField::new_unqualified("c1", DataType::Int32, true),
DFField::new_unqualified("c2", DataType::Float32, true),
],
HashMap::new(),
)
.unwrap();
print!("type = {}", expr.get_type(&schema).unwrap());
```

This results in the following output:

```text
type = Float32
```

## Conclusion

In this guide, we've seen how to create `Expr`s programmatically and how to rewrite them. This is useful for simplifying and optimizing `Expr`s. We've also seen how to test our rule to ensure it works properly.

0 comments on commit 86a2ab0

Please sign in to comment.